
MetaData.txt

LibraryList.txt

FileList.txt

BranchList.txt

EventList.txt
#! SECTION Files

(merit:jobinfo)root://glast-rdr.slac.stanford.edu//glast/Data/1.70/merit/r0256187154_v001_merit.root
(merit:jobinfo)root://glast-rdr.slac.stanford.edu//glast/Data/1.70/merit/r0256192883_v001_merit.root
(merit:jobinfo)…
(merit:jobinfo)root://glast-rdr.slac.stanford.edu//glast/Data/1.70/merit/r0256198612_v001_merit.root
(merit:jobinfo)root://glast-rdr.slac.stanford.edu//glast/Data/1.70/merit/r0256204341_v000_merit.root
(digi)/nfs/u35/MC-tasks/BeamTest-10_0000_digi.root
(digi)/nfs/u35/MC-tasks/BeamTest-10_0001_digi.root
(digi)…
(digi)/nfs/u35/MC-tasks/BeamTest-10_0008_digi.root
(digi)/nfs/u35/MC-tasks/BeamTest-10_0009_digi.root
(recon)/nfs/…
…

#! SECTION Libraries

/nfs/u09/builds/rh9_gcc32/Beamtest/v3r0907p0/libcommon.so
(mc)/nfs/u09/builds/rh9_gcc32/Beamtest/v3r0907p0/libmc.so
(digi)/nfs/u09/builds/rh9_gcc32/Beamtest/v3r0907p0/libdigi.so
(recon)/nfs/u09/builds/rh9_gcc32/Beamtest/v3r0907p0/librecon.so

#! SECTION MetaData
(merit.treeName) MeritTuple
(merit.runIdBranchName) EvtRun
(merit.eventIdBranchName) EvtEventId
(jobinfo.treeName) jobinfo
(digi.treeName) Digi
(digi.runIdBranchName) m_runId
(digi.eventIdBranchName) m_eventId
(digi.topBranchName) DigiEvent
(digi.topBranchType) DigiEvent
(digi.libName) libdigiRootData.so
…

#! SECTION Branches

(merit) -*
(merit) +PtT*
(merit) +Cal*
(digi) +m_eventId
(digi) +m_runId
(digi) +m_acd
(digi) -m_cal
(digi) …

#! SECTION Events
#! 2000 entries in original dataset.
#! 7 events after cut:

1 8
1 183
1 344
1 553
2 117
2 517
2 980

TSkim

BeamTest_X.rootlibdigiUserData.so

BeamTest_X.rootBeamTest_X.rootBeamTest_X.rootBeamTest_X.rootBeamTest_X.rootBeamTest_X.rootBeamTest_X.rootBeamTest_X.rootEvents.root

TSKIM : a tool for skimming ROOT trees

http://llr.in2p3.fr/trac/tskim/

As in many experiments, Fermi is storing its data within ROOT trees. A common activity of physicists is the tuning of selection criteria which define the events of interest, thus
cutting and pruning the ROOT trees in order to extract all the data linked to those specific events. TSkim has been designed to facilitate this task. Initially a pair of PERL and
ROOT scripts, TSkim is today a fully compiled C++ application, offering a panel of features going far beyond the original Fermi requirements.

 Thanks to a meta-data file which list the names of run and event identification
branches for the different kinds of trees (prepared once for all), the user can define
a TCut for a single kind of tree and let TSkim extract the associated entries from all
kinds of trees (see “MetaData.txt” below).

 TSkim selects the fastest ROOT features when possible (for example fast merging) and
checks for known ROOT issues (for example if the range of event ids is compatible with
TTreeIndex)

 For a given experiment, we can implement specific plugins. For Fermi we provide :

 A connection with the experiment data catalog, which can return the
list of input files for a given “task”.

 An inspector which can interpret the TKey object “header” available in all
Fermi data files, understands which release of the code was used when the
data file was generated, and deduces which user-data shared library should
be loaded.

After it has localized all the user data of interest, and if requested to do so, TSkim can
produce a special kind of ROOT file which does not contain the skimmed data, but the
file names, tree names, and entries of each piece of skimmed data. We call this a
“Composite Event List”. Such a light weight list can be communicated to collegues. It
can also be reused as input for a subsequent TSkim job. This is how one can apply
successive cuts on different kind of trees, while never duplicating real user data.

 Better support for very simple use-cases : for use-cases such as
skimming a few ROOT files with the same single tree within, the use of
tskim should prove as simple as the use of ROOT hadd.
 Better support for very heavy use-cases : Fermi users have reached

some limits when dealing with many small files, or very large files. We
must probably drop TEventList/TEntryList for something more scalable,
and reduce the number of loops through all data files.

Manage Meta-Data evolution.
 Implement a new way to associate the entries from different types

of trees, based on timestamps.
 Deliver an API : we have many ROOT utilities which are certainly

worth sharing with users.

All the information about a physical event does not stay in a single tree. Each
kind of information is stored in a dedicated kind of files and trees. In the
example below :
 raw measurements are collected in “Digi” trees, within “digi” files.
 reconstructed data is collected in “Recon” trees, within “recon” files.
 typical charasteristics are collected in “MeritTuple” trees, within “merit”

files, together with “jobinfo” trees.

The different kind of trees are not expected to be aligned: the nth entry in a
given tree does not refer the same physical event as the nth entry in another
kind of tree (that’s why ROOT friend trees will not help us). Relevant entries
are matched thanks to the branches which contain the run and event
identifiers.

2 15

2 15

2 15

m_runId

m_eventId
m_runId

m_eventId

EvtRun

EvtEventId

digi files recon files merit files

SkimmedEvents_jobinfo.root

SkimmedEvents_merit.root

SkimmedEvents_recon.root

SkimmedEvents_digi.root

One can also define a cut with
Unix variables. For example :

TS_TCUT = « TkrEnergy>200 »
TS_TCUT_DATA_TYPE = « merit »

If relative paths are used, files are
searched for in directories defined
by TS_LIB_DIRS

If relative paths are used, files are
searched for in directories defined
by TS_DATA_DIRS

