2rermilab A Multicore Communication Architecture for Distributed Petascale Computing

Weniji Wu*, Phil Demar®*, Matt Crawford*, Xian-he Sun**
* Fermilab, P.O. Box 500, Batavia, IL, 60510; ** lllinois Institute of Technology, Chicago, IL, 60616

CHEPOQ09, 21-27 March 2009, Prague, Czech Republic

Abstract. Distributed petascale computing involves analysis of massive data sets in a
large-scale cluster computing environment. Its major concern is to efficiently and rapidly move
the data sets to the computation and send results back to users or storage. However, the needed
efficiency of data movement has hardly been achieved in practice. Present cluster operating
systems usually are general-purpose operating systems, typically Linux or some other UNIX
variant. UNIX was developed more than three decades ago, when computing systems were all
single core. Computation intensive applications and timesharing were the major concerns.
Though the UNIX OS family has evolved through the years, Unix network services are not well
prepared for distributed petascale computing. The proliferation of multi-core architectures has
added a new dimension of parallelism 1n computer systems. In this paper, we describe a Multi-
core Communication Architecture (MCA) for the distributed petascale computing environment.
Our goal 1s to design OS mechanisms that optimize network I/O operations for multi-core
systems. In our proposed architecture, MCA vertically partitions CPU cores on a multi-core
system, allocating cores for either computation or communication, respectively. Cores
dedicated to communication perform TCP Onloading. MCA will dynamically adjust core
partitioning, based on detected system loads. CPU cores could be dynamically reassigned
between communication and computation. Combined with Receive-Side Scaling and flow
pinning technologies, MCA would perform flow scheduling to ensure interrupt- and
connection-level affinity for TCP/IP processing.

1. Background

m Demands for distributed petascale computing
Technical computing
National Security
E-Commerce

m For distributed petascale computing, industry and scientific institutions

have created data centers comprising hundreds or thousands of commodity

servers to develop massively-scaled highly distributed cluster computing
platforms
large-scale task parallelism or data parallelism

The datasets involved commonly reach petabytes or tens of petabytes per year, and
are growing; data access 1s mainly through network I/0

m The major concern of distributed petascale computing 1s to efficiently and
rapidly move data sets to computation and send results back to users or

storage. However, the needed efficiency of data movement 1s hardly
achieved 1n practice:

The notorious Memory- and I/O wall problems

Inetficiency inherent in the middleware and distributed system software 1n the end

systems
= Present OS network 1/O services are not well prepared for distributed petascale computing.

m Multicore architectures have become the pathway to higher performance
computing. Multicore has added a new dimension of parallelism and

requires a re-thinking of accepted engineering practice for single core
system.

2. The communication problems in General purpose OS

m (General purpose operating systems focus on ditterent strategies to “fairly”

share limited resources among tasks. With this principle, an OS 1s

essentially a library of I/O and process management functions. I/0 services

are passive, and invoked only when requested by tasks. This model’s

inability to support network I/O intensive distributed petascale applications

1s manifested in the following ways
Communication intrude on computation.
Communication protocol processing is not clearly separated from computation.

Communication protocol processing is inefficient in multi-core systems.

(Computing Division W

g Fermi National Accelerator Laboratory

3. The Design of Multicore Communication Architecture (MCA)

Communication Cores

Computation Cores

o ——

Socl el r o0l
< D *><so_ c_ketjj(}:D Process J
i = 1;

— | Send/Recv

=T Goskeld

= Send/Recv

i == . i} sea
L)
(== (socket) = 4
pik. Send/Recv-_ '.
it L

——

AA . . Communication | l Core | . Process |

___ ! et —— i
EY pd hl Load sensor "‘ h Partitioning * } Scheduler |
1 I__________; _____________ e e I ____________________________
(L e e S
Network S A . 0
Interrupts ;| \ L Load Balancing
Delivery | n, | ' b Flow
| I'u_*_______“__ui,_ Scheduler . Interrupt- & Flow-level |
n | Affinity
T ; ’

Network
Interrupts

MCA provides an integrated solution to perform efficient network I/O operations
to reduce data access delay. Logically, 1t has three components: the host protocol
stack, network application interfaces, and operating system supports.

. MCA Logic View

Communication Load Sensor. It monitors, collects and accounts various system
loads on communication cores.

Core Partitioning. It partitions CPU cores into two sets for communication and
computation respectively. The dynamic core partitioning mechanism decides
how many and which cores are assigned for communication; Communication
cores will perform TCP Onloading.

Process Scheduler. 1t coordinates with Core Partitioning and schedules threads
only upon communication cores.

Protocol Stack. On each communication core, Protocol Stack 1s invoked to
perform TCP Onloading by interrupt threads and is executed 1n the interrupt
context. Processes interact with Protocol Stack via the conventional socket
interfaces. We will re-implement the socket system calls and adapt them to
MCA mechanisms.

Flow Scheduler. 1t adaptively directs and distributes incoming and outgoing
traftic flows across communication cores.

. Initial Results

We have implemented the packet receiving mechanism for TCP Onloading
and a simple core partitioning mechanism. Figure 1 shows the experimental
results of running 1pert data transmission. In the figure, red bar represents the
TCP Onloading with communication separated from computation; blue bar
represents the original Linux communication architecture. The figure shows
that 1ipert 1s performing better for TCP Onloading with communication
separated from computation. The performance improvement 1s up to 11%.
The improvement 1s more apparent at higher throughput when network 1/0 1s
more 1intensive.

N t o o o i ~
]

Throughput (Gbps)

Figure 1 Throughput Comparison

