The ATLAS Tier-0

Overview and Operational Experience

For the ATLAS Tier-0 Team:

Markus ELSING Luc GOOSSENS Armin NAIRZ Guido NEGRI

CERN, Geneva/Switzerland

Overview

- Tier-O system overview
 - Tier-O functional requirements
 - Tier-O quantitative requirements
 - Tier-O architecture and components
- Operational experience in 2008
 - Computing exercises
 - Detector commissioning, cosmics and single-beam data taking
- Future plans and developments
- Summary

Tier-O Functional Requirements

- First-pass ESD (Event Summary Data), AOD (Analysis Object Data), primary DPD (Derived Physics Data) and TAG production
- First-pass calibration and alignment processing
- Express Stream reconstruction (2 passes)
- Uploading of TAG files into TAG database(s)
- Registration of all data products with the ATLAS DDM (Distributed Data Management system) and AMI (ATLAS Metadata Interface)
- Archival of RAW and derived data products on tape
- Support of off-line data-quality monitoring (DQM)
- Merging of RAW files
- Replication of selected data to the CERN Analysis Facility (CAF)

Tier-0 Quantitative Requirements

- O(10k) jobs per day
- O(10k) permanent files per day
 - RAW, ESD, merged DPD and AOD, ...
- O(10k) temporary files
 - unmerged RAW, unmerged AOD, ...
- Disk writing 880 MB/s
- Disk reading 1900 MB/s
- Tape writing 540 MB/s
- Approx. 1500 reconstruction jobs in parallel
- TAG uploading rate 200 Hz
- Above figures don't include calibration and Express Stream processing (+25%)

Tier-O Architecture

- The Tier-O consists of two process entities and a database:
 - An instance of the Tier-O Manager (TOM) process
 - An instance of a Production System (ProdSys) process
 - Supervisor ("Eowyn")
 - Executor ("TOExecutor")
 - The database (ProdDB) persistifies the states of both process entities, in addition to storing logging and monitoring data

- The Tier-0 interacts with four primary external entities:
 - DQ2, the ATLAS distributed data management system
 - SFO (Sub-Farm Output), the Event Filter (=level-3 trigger) output processes
 - CASTOR, the CERN mass-storage system
 - LSF, the CERN batch system

TOM and ProdSys Instances

- Cf. detailed presentation on the Tier-O software suite at CHEP'07
- Tier-0 Manager (TOM)
 - Driven by RAW data arriving from the SFOs
 - Defines all subsequent datasets, tasks/jobs in the Tier-O workflow
 - Very modular, easily configurable
 - Most of the processes derive from single template
 - Processes can be loaded at initialisation or run time
 - Process configuration can be dynamically changed at run time
- ProdSys consists of a "facility" neutral supervisor and a "facility" specific executor component
 - Runs the jobs defined by TOM
 - Easily configurable
 - Supervisor component "Eowyn"
 - Communicates with ProdDB
 - Picks up jobs to be run, submits jobs (via the executor plugin), follows the job status, attaches output files to corresponding datasets, ...
 - Executor component "TOExecutor" (LSF specific)

Monitoring and Shift System

- Extensive Tier-0 monitoring in place
 - Based on cron jobs (acrontab)
 - cron job collects information from various sources
 - Lemon (CERN IT), ProdDB, AFS, ...
 - ... computes sums, averages, etc. and stores result both in ProdDB and RRD archive (every 5 min)
 - ... calls RRD tools to create graphs in web-readable AFS directory
- Tier-0 shift system and infrastructure in place
 - Necessary web interfaces for interventions, electronic logbook, etc.
 - About four months of experience gained during 2008 data taking
 - Lots of useful suggestions and feedback from shifters
 - Input to new developments
 - Team of about 25 experienced shifters so far
 - Enough to run two 8-hour shifts per day, more needed and expected to join for 24/7

Tier-O Activities in 2008

- The Tier-O has been integral part in all major data-taking exercises of the last (almost) two years
- Computing exercises in 2008
 - FDRs (Full Dress Rehearsals): goal to test as much as possible the full data processing and analysis chain, from DAQ to the end-user
 - FDR-1: week of Feb 4th 2008
 - » 10 hours of L= 10^{31} data (+ one hour of 10^{32}), about 0.4 pb⁻¹ of data
 - FDR-2: week of Jun 2nd 2008
 - » A few hours of L= 10^{32} data (+ a few minutes of 10^{33}), about 1.5 pb⁻¹ of data
 - » Re-processing of a few datasets with improved s/w and calibration (FDR follow-ups)
 - CCRC'08 (WLCG Common Computing Readiness Challenge)
 - Tier-O mainly used as a mock-data generator
- Cosmics and single-beam data taking in 2008
 - "Milestone" weeks: cosmics data taking, with combined sub-detector systems
 - M6 (Mar 2008), M7 (May-Jun 2008), M8 (Jul-Aug 2008)
 - Detector weeks: commissioning of individual sub-detector systems with cosmics
 - Continuous cosmics data-taking period (Jun-Oct 2008)
 - Single beam data-taking period (Sep 2008)

Important Achievements in 2008

- Implementation of an SFO "handshake" database and a "handshake" mechanism between SFOs and Tier-0
 - Contains all necessary information about runs, luminosity blocks, files
 - Completeness, status on SFOs, transfer status, file metadata, etc.
 - Database itself is protected by the firewall of the online network
 - Read-only offline replica in place (Oracle streams)
 - Information is pulled from there to the Tier-O ProdDB
- Exercising of full processing chains/cycles for physics, express, and calibration/alignment streams (during FDR1&2)
- Development and establishment of extensive monitoring and a fully functional shift system/infrastructure
 - Related: web interfaces for changing the Tier-O run configuration and to sign off datasets for processing
 - (To be) used by offline commissioning and data preparation groups
- Partial re-design of TOM, to achieve more modularity and flexibility
 - After experiences with FDR
 - Requirements became only clear in the course of the exercises

Tier-O Readiness

- Tier-0 has been working basically fine and reliably
 - Software and infrastructure in place to handle nominal data flows and carry out all necessary work flows
 - Tier-O Management System (TOM), ProdSys instance (Eowyn, TOExecutor)
 - Hardware infrastructure: CASTOR pools, LSF batch farm
 - Full processing chain in place
 - Interactions with online SFO DB (look-up of new RAW data)
 - Dataset definition, task/job configuration and definition
 - Running of express-stream, bulk, calibration (proof-of-principle) processing
 - Running of reconstruction, (all sorts of) merging, uploading jobs
 - Input for data quality monitoring (DQM) groups, creation of DQM web displays
 - Registration of data with DDM and AMI
 - Replication of data necessary for calibration/alignment to the CAF
 - Running of clean-up procedures (on CASTOR, AFS)
 - Extensive monitoring in place
 - Shift system in place

10

Tier-O Activities: Data Taking

 Left: Tier-O monitoring plots from cosmics and single-beam data taking in the period Sep-Oct 2008

Right: I/O rates on the main Tier-O/CASTOR production pool in the period Mar 2008 to Mar 2009

~25% ~35% of nominal annual rate

Data Type	June 24	4 th - October 2	28 th , 200	January 1 st - June 24 th , 2008			
	Files	Events	Tot. Size [MB]	Files	Events	Tot. Size [MB]	
RAW	693,509	464,362,139	1,104,305,943	87,796	40,059,042	136,324,739	
CALRAW	17,028	110,463,488	17,558,049	130	n/a	1,886	
ESD	651,109	434,868,635	240,578,525	104,645	56,379,218	14,017,253	
ESD_FILTERED	474,716	n/a	7,795,534	70,284 n		242,337	
CBNT	651,109	434,868,635	404,906,622	104,645	56,379,218	21,286,696	
AOD	2,572	79,046,922	1,894,468				
TAG	2,572	79,046,922	4,407				
TAG_COMM	4,623	325,676,278	27,558	1,914	17,289,650	388	
HIST	5,378	n/a	183,594	2278	n/a	77,183	
NTUP_PIXELCALIB	354	n/a	21,974				
NTUP_MUONCALIB	5,022	n/a	2,285,878				

Glossary:

• RAW: physics and debug streams from DAQ

• CALRAW: calibration streams from DAQ

• ESD_FILTERED: ESDs of events with at least one ID track

• CBNT: "Combined n-tuples" (plain ROOT, to be phased out in 2009)

• TAG_COMM: commissioning TAGs (produced in reconstruction step)

• TAG: physics TAGs (produced in AOD merging step)

• HIST: merged DQM histograms

• NTUP_*CALIB: merged n-tuples for Pixel and Muon detector calibration purposes

Cosmics data taken and processed Jan-Oct 2008

Task Type	June 24 th - October 28 th , 2008				January 1 st - June 24 th , 2008			
	Tasks	Total Jobs	Done Jobs	CPU Wall Time [d]	Tasks	Total Jobs	Done Jobs	CPU Wall Time [d]
recon	5,602	691,296	651,411	29,246	2,081	107,649	105,547	4,236
aodmerge	774	2,581	2,572	219	n/a	n/a	n/a	n/a
histmerge (1st pass)	5,469	30,381	30,322	298	2,004	3,907	3,872	101
histmerge (2 nd pass)	5,414	5,400	5,392	15	1,122	1,112	1,110	2
dqmdisplay	5,349	5,349	5,345	24	1,988	2,190	1,879	8
tagmerge (1 st pass)	4,658	9,768	9,666	16	829	1,460	1,460	<1
tagmerge (2 nd pass)	4,632	4,628	4,625	7	829	820	820	<1
tagupload	n/a	n/a	n/a	n/a	400	26,820	26,820	1
ntupmerge	908	5,381	5,376	15	n/a	n/a	n/a	n/a

Glossary:

• recon: first-pass reconstruction (usually one job per RAW file)

 aodmerge: AOD merging and physics TAG production
histmerge: DQM histogram merging, done in two steps (step 1: incremental merging every 15min;

step 2: final merging, to get one file per run/stream)

dqmdisplay: DQM webpage creation (based on merged run/stream histograms)
tagmerge: commissioning TAG merging (done in two steps, similarly to histmerge)

tagupload: uploading of TAGs to DB (done only for M8 tags)
ntupmerge: merging of Pixel and Muon calibration n-tuples

Cosmics processing tasks and jobs run Jan-Oct 2008

Work Plan for 2009/10 and Beyond

- A last E to 4 the department of the state of
- Development of new shifters' interface and monitoring pages
 - Based on experience from last year's running
 - Easier overview on running processes and their states, alarms; easier means of intervention
 - Prototypes expected in the coming 1-2 months
 - Fine-tuning during Spring/Summer cosmics data taking
 - Expected to be operational for collisions
- Development of an automated task/job management system for commissioning, calibration and alignment groups
 - Brainstorming meeting with involved groups end of Jan 2009
 - Prototypes expected in the coming 1-2 months
 - Expected to be operational for collisions
- Long term: focus on maintenance
 - Refinement of the system, extension/adjustment of its functionality
 - Based on experience from 2009/10 cosmics and collisions running
 - Limited experience with collisions data taking yet (only from FDRs)
 - Have to be prepared for possible (up to "drastic") changes to the requirements

Summary

- The Tier-O has proven to work stably and reliably during all datataking and computing exercises in 2008
- The system is mature and robust enough to handle the expected rates and throughput for 2009/10 cosmics and collisions data taking
 - Hardware, software, monitoring and shift infrastructure, ...
- Despite experience limited only to FDR exercises, we believe that the Tier-O software suite is prepared for handling collisions data taking workflows
 - And flexible enough to be adjusted quickly to new requirements
- New features/improvements are under development and expected to be ready (and tested) before collisions data taking
 - New monitoring pages and shifters' interface
 - Task management system for calibration and alignment activities

Back-Up Slides

Tier-O Hardware Infrastructure

- Current Tier-O hardware
 - CASTOR pools
 - "tOatlas": main production pool, for permanent data, with tape back-end
 - » 38 disk servers, 200 TB
 - » Used in common by SFOs, Tier-0, DDM
 - "t0merge": for transient data, disk only
 - » 15 disk serves, 80 TB
 - LSF batch farm
 - About 200 nodes, 1500 cores
 - Oracle production database (ProdDB) instance
 - Two server machines
 - One for production, one for development and as a spare

