
Towards end-to-end
debugging for data transfers

Gavin McCance
Javier Conejero Banon

S hi L itSophie Lemaitre
CERN IT/FIO

CHEP 2009

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outilne

• The challenge
• Our problem
• Our solution

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

end-to-end debugging - 2

Outilne

• The challenge
• Our problem
• Our solution

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

end-to-end debugging - 3

The challenge

• The data service model we have in the WLCG is all a bit complex
• There are many layers of software involvedThere are many layers of software involved

– Expt framework<->Transfers<->SRMs<->Stagers<->gridFTP<->Tape

• Individual components are quite internally complex

end-to-end debugging - 4

Efficiency?

• WLCG planning meeting November 2008:
• Examined efficiency of the whole data management stack• Examined efficiency of the whole data management stack

– All the files get there in the end! (multiple retries)
– RAW transfer rate (#successes / total # attempts, per day)(y)

• Failure can and do happen in any layer, at both ends of a transfer

About ¼ of all transfer attempts fail due to storage errors !• About ¼ of all transfer attempts fail due to storage errors !

5

How can we improve this?

1. Summary “dashboards” collect ‘events’
and provides summary views, sliced in p y
different ways
– e.g. Current quality on transfers per site

2. Distributed debug tracing allows you to
follow a specific operation through allfollow a specific operation through all
the middleware components that
process it
– Show me the transfer for this file

• Service operations staff typically useService operations staff typically use
– the first one to look for problems
– second one to drill down and understand

themthem

end-to-end debugging - 6

Outilne

• The challenge
• Our problem
• Our solution

end-to-end debugging - 7

Operational cost

• Operational cost of distributed debugging is still too high
• Currently it’s grep intensive over all across multiple services• Currently it s grep intensive over all across multiple services

– wassh –l root –c gridfts grep reqID /var/tmp/*failed/glite*.log
– wassh -l root -c gridsrm/atlas zgrep "49b4fa78-0000-1000-ad97-fa78af063a57"

/ / l/ /l 4/var/spool/srm/log.4.gz

• This impacts sites and experiment shiftersThis impacts sites and experiment shifters
– Training curve is rather steep for new operations staff
– Inaccessible files (~hours)
– gridFTP mysteriously timing out (bouncing emails/phone calls back a couple

of times to the other site) (~hours)
– “We see reduced transfer rates, please could you check” (~hours)
– Performance variance is typically very large and not well understood

• Some files transfer at 10MB/s, some go a 200KB/s, same site, same time

• Better debug tools can reduce operations cost!
end-to-end debugging - 8

What we’re aiming for

1. A support ticket comes in
– “We see lots of transfers timing out”– We see lots of transfers timing out
– Example file:
– /castor/cern.ch/grid/atlas/atlasdatadisk/data08_cosmag/ESD/data08_cosmag.00090272.physics_RPCwBeam.reco.

ESD.o4 r560 tid027478/ESD.027478. 00769.pool.root.1”ESD.o4_r560_tid027478/ESD.027478._00769.pool.root.1

2. Submit request to debug transfer for this file

3. Picture will be built up asynchronously as data is returned from the
various sources like a web-page loadingvarious sources, like a web page loading

end-to-end debugging - 9

What we’re aiming for

FTS transfer summary:
“/castor/...”, 5.2 MB/s, CERN-PROD, RAL-T1, atlas, “gridFTP: the server timed out”

Trace detail:
srmPrepareToGet -> CERN: detail

srmGetStatusOfGet -> CERN: detail
Srm gsiftp returned CERN: gsiftp://lxfsrc0203 cernSrm gsiftp returned CERN: gsiftp://lxfsrc0203.cern....

SRM service: received call
Scheduled on stager
TURL determined

Stager: request schedule of job of diskserver

LSF scheduler: diskserver access scheduled

srmPrepareToPut -> RAL: detail
srmGetStatusOfGet -> RAL: detail

Srm gsiftp returned RAL: gsiftp://dispool0023.rl.ac....
SRM service: received call Stager: request schedule of job of diskserver

gridFTP 3rd party call:

SRM service: received call
Scheduled on stager
TURL determined

Stager: request schedule of job of diskserver

Scheduler: diskserver access scheduled

gridFTP 3 party call:
CERN -> RAL: detail

:
GridFTP RAL: FTS client connect
Opening data connection to other side on port X
Timeout!

:
Timeout!

end-to-end debugging - 10

Integration problem

• It’s an integration problem

– Multiple logfile / database / feed formats to be parsedMultiple logfile / database / feed formats to be parsed
– Logs located on multiple machines (O(1000) nodes @CERN)

end-to-end debugging - 11

Outilne

• The challenge
• Our problem
• Our solution

end-to-end debugging - 12

Previous attempts: parse it all

• Our previous attempts focused on recording all events
– You collect all events from all sources, all the time, parse them, and put , , p , p

them in an index database
• Specific debug searches can be run over the database

– Approach used by SplunkApproach used by Splunk
– Common logging instrumentation: approach taken by netlogger

• While this does work, routine parsing, collecting and joining can be
expensive
– Parsing 10’s GB’s of logs from O(1000) machinesa s g 0 s G s o ogs o O(000) ac es
– It’s overkill for this application

• A typical service manager will probably run no more than 0(100) debug trace
queries a day, and we know what queries will be runqueries a day, and we know what queries will be run

• We prefer to parse on demand
– Can make use of debug trace databases if they are available

end-to-end debugging - 13

Our approach

• On-demand extraction from data sources (request /
response)response)
– Send out requests to all data sources that might know something,

get them to parse and return what they know
– If sufficiently detailed summary or trace logging databases are

available, use them
– Integrate other feeds (fabric monitoring network monitoring data)– Integrate other feeds (fabric monitoring, network monitoring data)

• Integrate (join) the data from the various sources for that• Integrate (join) the data from the various sources for that
specific debug request
– The flow is asynchronous, i.e. the picture of what happened is built y p pp

up as information is returned
– Even with missing information, the picture obtained is still useful for

debuggingdebugging

end-to-end debugging - 14

Architecture

• Based on message-oriented middleware
• This handles the request / response reliably and easily• This handles the request / response reliably and easily

Point-to-pointPublish-Subscribe / Broadcast

• Send a query to all nodes that • Send a query to the oney
might know something

• e.g. all SRM nodes in a load-
balanced alias

Send a query to the one
diskserver that we know
handled the transfer

idFTP l

end-to-end debugging - 15

balanced alias • e.g. gridFTP logs

Architecture

The message s stem handles the pl mbing and the reliable• The message system handles the plumbing and the reliable
delivery of the messages – local agents do the parsing

end-to-end debugging - 16

Messaging technology

• Using the MSG messaging framework
– Technology already used in WLCG production in EGEE/OSG for grid site-gy y p g

monitoring data
– See EGEE User Forum for details of MSG:
– http://indico cern ch/contributionDisplay py?contribId=136&sessionId=9&confId=40435http://indico.cern.ch/contributionDisplay.py?contribId 136&sessionId 9&confId 40435
– Uses Apache ActiveMQ: open source, easy to use

Throughput requirements
– Isn’t really an issue for administrator initiated requests: O(100) per day

Latency requirementsLatency requirements
– Needs to deliver fast – we don’t want to be waiting too long

Reliability requirements
– We do care that the messages get there in order to build up a full picture

Scaling requirements
– We need it to scale up to O(1000) nodes so that we can run this over all our– We need it to scale up to O(1000) nodes so that we can run this over all our

diskservers

end-to-end debugging - 17

Current status

• Planning to integrate all data at CERN from:
– File Transfer Service (Tier-0 physics data export service)– File Transfer Service (Tier-0 physics data export service)
– Castor SRM and Castor core components
– Lemon fabric monitoring service

• Aim: tool usable by service managers in summer to help y g p
with the transfer debugging problem

• Future:
– Add data feeds from other sites (other SRMs): collaboration with

t l it Add t k it i d texternal sites. Add network monitoring data
– Tool itself useful for other sites?
– Re-use components for distributed workload-management services?Re use components for distributed workload management services?

end-to-end debugging - 18

Flexible architecture

• Future re-plumbing is easy: the architecture allows us to
easily change the data sources as software developseasily change the data sources as software develops
– Decide we want to collect and archive gridFTP logs on 10 central

machines
• Move the gridFTP agents off all your diskservers to just these 10

machines instead, to answer the same request
• The rest of the system remains unchangedy g

– Next version of one component comes with a detailed-enough trace
database?

Unplug all the log mining agents and plug on an agent to answer the• Unplug all the log-mining agents and plug on an agent to answer the
same request from the trace database instead

• The rest of the system remains unchanged

– Want to add in network flow data ?
• Write another feed to make this data available and add it in

end-to-end debugging - 19

Summary

Aim: to reduce operations cost of running complex
distributed servicesdistributed services

• Developing a flexible architecture based on messaging for• Developing a flexible architecture based on messaging for
trace-debugging of distributed services
– Parse logs as data sourcesg
– Use trace database sources if available

• Integrate data on-demand from various sources instead of
routine parsing

Will have a usable tool to help with the transfer debugging
problem by summer

end-to-end debugging - 20

Backupp

Presentation title - 21

Previous attempts: common formats

• Using common formats and even better a common logging
trace schema for all components involved is a great idea!trace schema for all components involved is a great idea!

• Easier to do if you control all the components• Easier to do if you control all the components
– e.g. most components of Castor drop trace info into a distributed

tracing component (DLF database)
– Netlogger calls can be added to the code to send data streams out

• Hard for other components
– Some bits of the code we don’t ‘own’ (Castor: LSF, gridFTP), so it

can be hard to add trace info at the level needed
– Why should FTS dCache Lemon Nagios log into the same format?Why should FTS, dCache, Lemon, Nagios log into the same format?

• While this is a good goal we prefer to deal with theWhile this is a good goal we prefer to deal with the
integration problem we have directly

end-to-end debugging - 22

