Scalla As a Full-Fledged LHC Grid SE

Wei Yang, SLAC Andrew Hanushevsky, SLAC Alex Sims, LBNL Fabrizio Furano, CERN

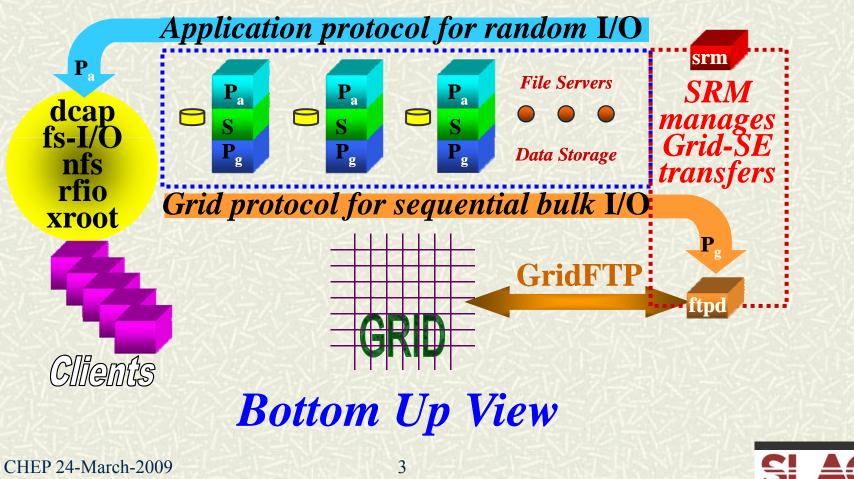
SLAC National Accelerator Laboratory Stanford University 24-March-09

CHEP

Outline

The canonical Storage Element
Scalla/xrootd integration with SE components
GridFTP

Cluster I/O


BeStMan SRM

Name space issues
Static Space Tokens

Conclusions
Future Directions

Acknowledgements

The Canonical Storage Element

SLAC NATIONAL ACCELERATOR LABORATORY

Distinguishing SE Components

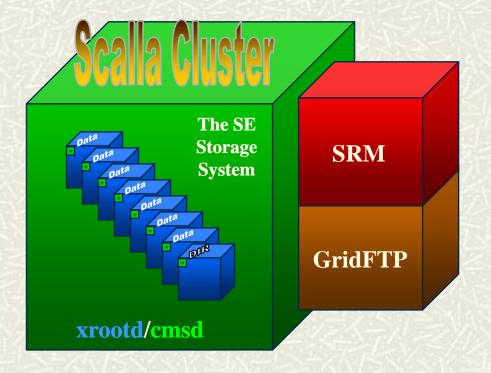
SRM (Storage Resource Manager v2+)

- Only two *independent** version available
 - Storage Resource Manager (StoRM)
 - http://storm.forge.cnaf.infn.it/
 - Berkeley Storage Manager (BeStMan)
 - http://datagrid.lbl.gov/bestman/
 - Both are Java based and implement SRM v2.2

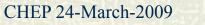
GridFTP

- Only one de facto version available
 - Globus GridFTP
 - http://www.globus.org/grid_software/data/gridftp.php

*Castor, dCache, DPM, Jasmine, L-Store, LBNL/DRM/HRM, and SRB SRM's are tightly integrated with the underlying system.

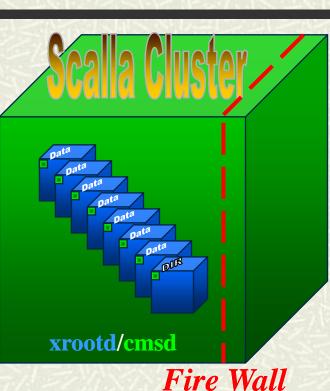

Which SRM?

We went with **BeStMan**


- LBNL developers practically next door
- Needed integration assistance
- Address file get/put performance issues
- H LBNL team developed BeStMan-Gateway
 - Implementation of WLCG token specification
 - Stripped down SRM for increased throughput
 - Sustained performance ~ 7 gets/sec & ~ 5.6 puts/sec
 - Original BeStMan 1 ~ 1.5 gets/sec & 0.5 ~ 1 puts/sec
 - Perhaps the fastest SRM available today

The Integration Task

You might mistakenly think this is simple!



Integration Issues (why it's not simple)

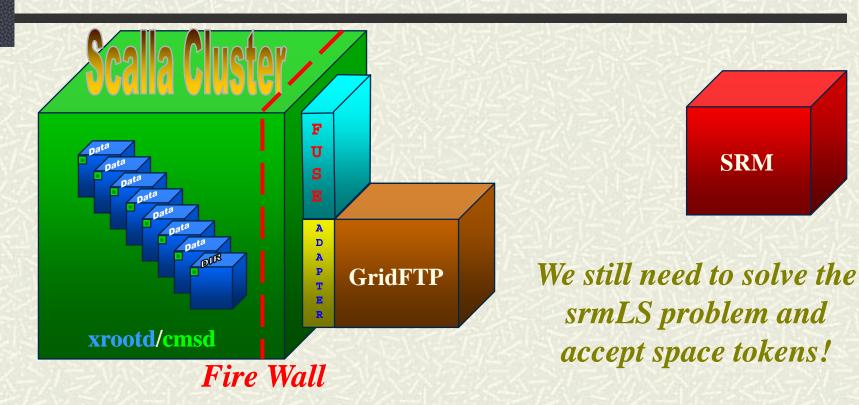
- Scalla/xrootd is not inherently SRM friendly
 SRM relies on a true file system view of the cluster
 Scalla/xrootd was not designed to be a file system!
 Architecture and meta-data is highly distributed
 Performance & scalability trump full file system semantics
 The Issues . . .
 - GridFTP I/O access to the cluster
 - SRM's view of the cluster's name space
 - WLCG Static Space Tokens

Integration Phase I (GridFTP)

We still have an SRM problem! Source adapters generally won't work with Java.

SRM

GridFTP

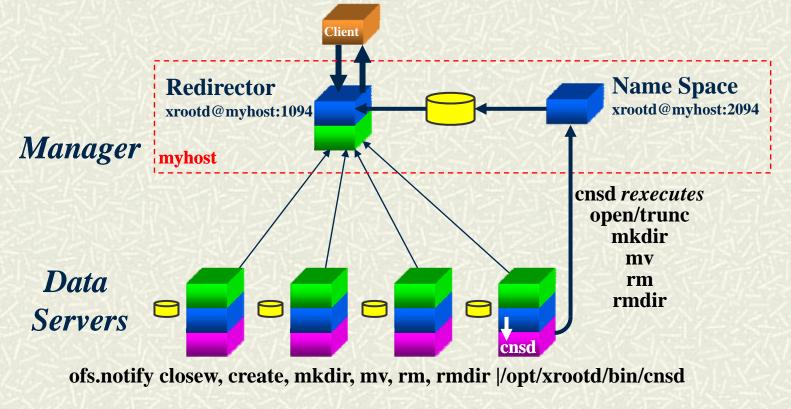

D A P

т

Source Adapter: POSIX Preload Library for xrootd access Provides full high-speed cluster access via POSIX calls GridFTP positioning can be more secure!

Integration Phase II (BeStMan SRM)

Target Adapter: File System in User Space (FUSE) Full POSIX file system based on XrdClient called xrootdFS Interoperates with **BeStMan** and probably StoRM

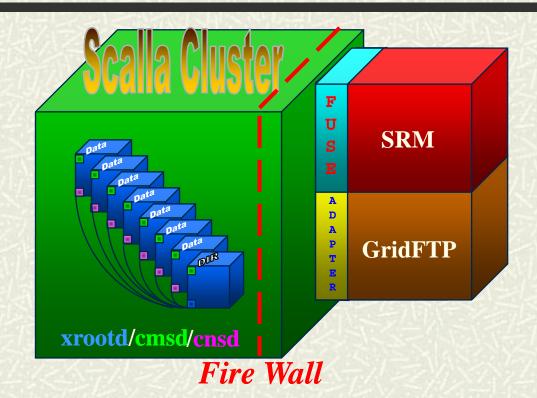

SRM

The srmLS Problem & Solution

The SRM needs full view of the *complete* name space SRM simply assumes a central name space exists Scalla/xrootd distributes the name space across all servers There is no central name space whatsoever! **#** Solution: create a "central" *shadow* name space • Shadow name space $\equiv \sum$ cluster name space Uses existing xrootd mechanisms + cnsd daemons (i.e., no database) **#** This satisfies srmLS requirements Easily accessed via FUSE

The Composite Name Space (cnsd)

opendir() refers to the directory structure maintained by xrootd:2094 (*full* cluster name space)



Composite Name Space Actions

All name space actions sent to designated **xrootd**'s Local xrootd's use an external local process named cnsd ensd name space operations done in the background Neither penalizes nor serializes the data server **#** Designated **xrootd**'s maintain composite name space Typically, these run on the redirector nodes **#** Distributed name space can now be concentrated No external database needed Small disk footprint Well known locations for find complete name space

The 10,000 Meter View

A cnsd runs on each data server node communicating to an extra xrootd server running on the redirector node

SRM Static Space Tokens

Encapsulate fixed space characteristics

- Type of space
 - E.g., Permanence, performance, etc.
- Implies a specific quota
- **#** Using an arbitrary pre-defined name
 - E.g., atlasdatadisk, atlasmcdisk, atlasuserdisk, etc.
- **#** Typically used to create new files
 - Think of it as a space profile
- **#** Space tokens required by "some" LHC experiments
 - E.g. Atlas

Static Space Token (SST) Paradigm

Static space tokens map well to disk partitions
A set of partitions define a set of space attributes
Performance, quota, etc.
Since an SST defines a set of space attributes
Then partitions and SST's are interchangeable

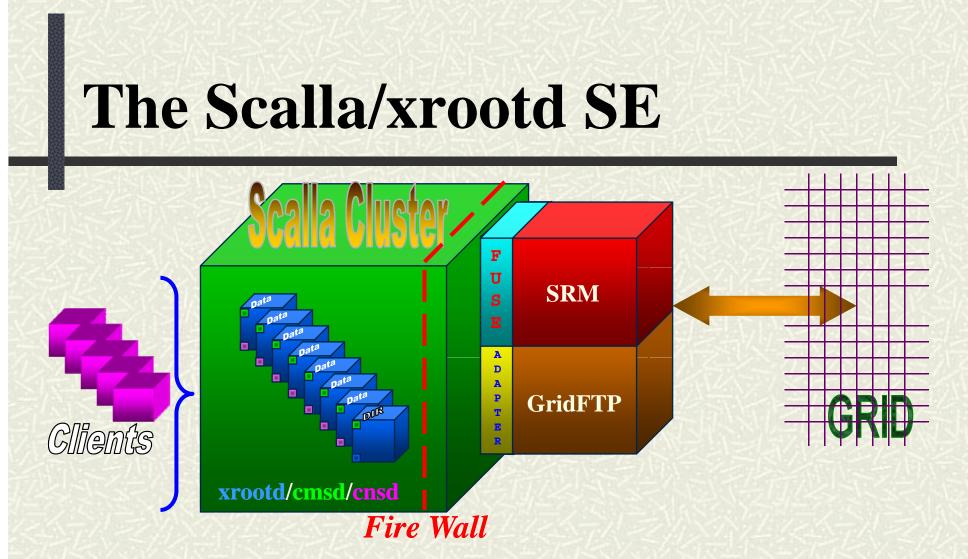
Why do we care?

Because partitions are natively supported by xrootd

Supporting Static Space Tokens

We leverage **xrootd**'s built-in partition manager

- Just map space tokens on a set of named partitions
 - xrootd supports real and virtual partitions
 - Automatically tracks usage by named partition
 - Allows for quota management (real \rightarrow hard & virtual \rightarrow soft quota)
- **♯** Since Partitions ⇔ SRM Space Tokens
 - Usage is also automatically tracked by space token
- # getxattr() returns token & usage information
 - Available through FUSE and POSIX Preload Library
 - See Linux & MacOS man pages



Integration Recap

GridFTP

- Using POSIX preload library (source adapter)
 SRM (BeStMan)
 - Cluster access using FUSE (target adapter)
 - srmLS support
 - Using distributed cnsd's + central xrootd processes
 - Static space token support
 - Using the built-in xrootd partition manager

But wait!

Can't we replace the source adapter with the target adapter Why not use FUSE for the complete suite?

CHEP 24-March-2009

Because Simpler May Be Slower

- Currently, FUSE I/O performance is limited
 Always enforces a 4k transfer block size
 Solutions?
 - Wait until corrected in a post 2.6 Linux kernel
 - Use the next SLAC xrootdFS release
 - Improved I/O via smart read-ahead and buffering
 - Use Andreas Peters', CERN xrootdFS
 - Fixes applied to significantly increase transfer speed
 - Just use the Posix Preload Library with GridFTP
 - You will get the best possible performance

Conclusions

Scalla/xrootd is a solid base for an SE
Works well; is easy to install and configure
Successfully deployed at many sites
Optimal for most Tier 2 and Tier 3 installations
Distributed as part of the OSG VDT
FUSE provides a solution to many problems
But, performance limits constrain its use

Future Directions

More simplicity!
Integrating the cnsd into cmsd

Reduces configuration issues
Pre-linking the extended open file system (ofs)
Less configuration options

Tutorial-like guides!

Apparent need as we deploy at smaller sites

Acknowledgements

Software Contributors

- Alice: Derek Feichtinger
- CERN: Fabrizio Furano, Andreas Peters
- Fermi: Tony Johnson (Java)
- Root: Gerri Ganis, Beterand Bellenet, Fons Rademakers
- STAR/BNL: Pavel Jack1
- SLAC: Jacek Becla, Tofigh Azemoon, Wilko Kroeger
- LBNL: Alex Sim, Junmin Gu, Vijaya Natarajan (BeStMan team)
- **#** Operational Collaborators
 - BNL, FZK, IN2P3, RAL, UVIC, UTA
- **#** Partial Funding
 - US Department of Energy
 - Contract DE-AC02-76SF00515 with Stanford University

