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Abstract

The ATLAS detector at the Large Hadron Collider is expected to collect an unprecedented wealth of new data at a completely new energy scale. In particular its Liquid Argon electromagnetic and hadronic calorimeters will play an essential role in measuring final states with electrons and photons and in contributing to the measurement
of jets and missing transverse energy. Efficient monitoring of data will be crucial from the earliest data taking onward and are implemented at multiple levels of the readout and triggering systems. By providing essential information about the performance of each sub-detector and their impact on physics quantities, the monitoring will be
crucial in guaranteeing data to be ready for physics analysis. The tools and criteria for monitoring the LAr data in the cosmics data taking will be discussed. The software developed for the monitoring of collision data will be described and results of monitoring performance for data obtained from a full simulation of the data processing
that includes data streams foreseen in the ATLAS operation will be presented. The status of automated data quality checks will be shown.
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Control Detector Control System

The LAr Calorimeter makes use of the same DCS as the rest of the ATLAS experiment. The
DCS system allows monitoring of the sub-detector hardware and infrastructure, controls the
operation state of the detector, and allows for action to be taken in response to abnormal
behavior. The DCS software makes use of the Supervisory Control and Data Acquisition
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The Online Histogram Service is responsible for directing the flow of histograms from

all sub-detectors and their component systems and storing them. The Online Histogram
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Important features of the data are logged for future use in calibration and further
monitoring.
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While final bulk processing may take on the order of \
months to be completed, the intial express stream

is immediately available and used by the LAr
calorimeter for offline monitoring. Offline monitoring
makes use of the same tools used in the control
room for online monitoring and examines the same
quantities, forming a continuous chain from initial
data taking to the end-users analysis based on the
ATHENA analysis framework, a derivative of LHCb’s
Gaudi framework. Offline monitoring is of course
more detailed and in depth due to the extended time
available over a control room shift.
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