

Enabling Grids for E-sciencE

The impact and adoption of GLUE 2.0 in the LCG/EGEE production Grid

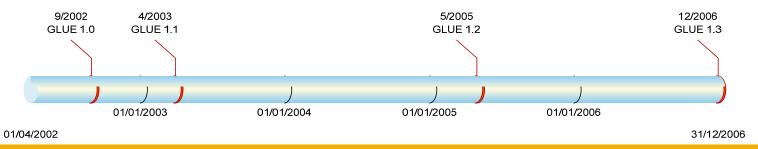
Stephen Burke, Sergio Andreozzi, Flavia Donno, Felix Ehm, Laurence Field, Maarten Litmaath and Paul Millar

CHEP09, Prague

www.eu-egee.org

Overview

- Why we need a schema
- The history of the GLUE project
 - Problems with GLUE 1.x
- The GLUE 2.0 schema
 - How we got there
 - What does it look like?
 - What are the major changes from GLUE 1.x?
 - What advantages does it have?
- Implementation and use in LCG/EGEE
 - Service Discovery
 - Use with SRM-enabled storage
 - Resource accounting
 - Implementation timeline
- Outlook
- This talk follows on from a talk about <u>GLUE 1.x experience in LCG/EGEE</u> at CHEP07


Why do we need a schema?

- A Grid consists of many sites with a wide variety of resources
- Users, applications and middleware need to know what resources are available and what their properties are
 - What Workload Managers are available to CMS?
 - Find a Computing Service running SL5 with > 3 Gb memory
 - Find a Storage Service with 20 TB of free space
- Grid and VO management and operations staff need an overview of the state of the Grid
 - How many jobs are running in the UK?
 - How much disk space has ATLAS used?
 - What is the total installed CPU power available to LCG?
- The schema allows the resource properties to be published and queried in a uniform way
- The information is transported via an information system, but the schema is logically independent of it

GLUE history

- The European DataGrid project (predecessor of EGEE) initially had its own schema (2001)
- The GLUE (Grid Laboratory for a Uniform Environment) project was a collaboration between EDG, EU DataTAG, iVDGL (predecessor of OSG) and Globus to promote interoperability
 - The GLUE schema 1.0 was defined in September 2002 after several months of discussion
 - Version 1.1 was released with some minor improvements in April 2003, and deployed by EDG and then LCG and EGEE in 2003/4
 - Version 1.2 was agreed in February 2005, finalised in May 2005 and deployed (fairly gradually) by LCG/EGEE in 2006
 - Version 1.3 was agreed in October 2006, finalised in December 2006 and deployed from 2007 onward (adoption is still in progress)

Problems with GLUE 1.x

- The schema has worked, but we have many accumulated issues
 - See talk at CHEP 07
- Initial schema definitions were based on limited experience
 - Only for CE and SE
 - No SRM for storage in 2002, just "classic SE"
 - Embedded assumptions which turned out to be too restrictive
 - Not easily extendable
- Definitions not always clear, documentation somewhat limited
 - Case sensitivity, optional attributes, units, special values ("undefined")
 - Ambiguities (CPUs/job slots)
 - Too specific (only two CPU benchmarks, SpecInt 2k and SpecFloat 2k)
 - Many things effectively defined by LCG/EGEE practice
- We always required changes to be backward-compatible to make upgrading easier
 - 1.x schema had limited scope for additions, so changes often "shoehorned" into the available structure
 - 1.2 schema introduced a generic GlueService object, but it had no connection to the existing CE and SE objects

- Always intended to defer conceptual and structural changes to a major revision called GLUE 2.0
 - Complete redesign, no backward compatibility
 - But without losing what we already had in GLUE 1
 - Incorporating lessons from many years of experience
- First discussion on GLUE 2.0 at the October 2006 meeting
- Decision made to define GLUE 2.0 within the OGF
 - Many (~ 14) Grid projects participating
 - Including Nordugrid/ARC
 - End up with a genuine standard
 - The OGF process didn't create too much overhead
 - Some extra use cases to consider, but HEP projects were the major driver
- Positive Outcomes
 - GLUE widely accepted within OGF
 - Interacts with other OGF standards (BES, SAGA, JSDL, ...)
 - Grid Forge tools helped the activity coordination
 - Increased participation from, and hence acceptance by, other projects
 - Broad range of viewpoints challenged implicit assumptions
 - Raised visibility/commitment within EGEE
 - Recent high-profile mentions from the EGEE project leader and technical director

EGEE-III INFSO-RI-222667

- OMII-Europe
- EGEE/LCG
- ARC
- TeraGrid
- UNICORE
- DEISA
- D-Grid

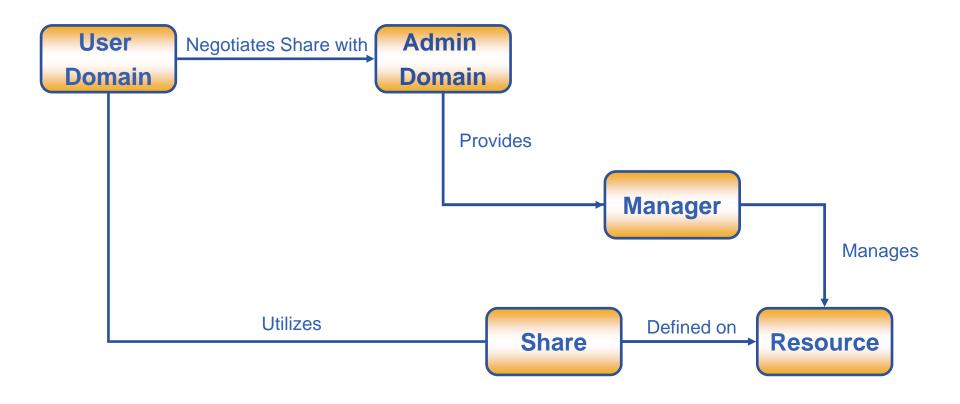
- AustralianGrid
- NAREGI
- NGS
- OSG
- BREIN
- OGF-Europe

Glue 2.0 timeline

- October 2006: Decision taken to move into the OGF
- January 2007 (OGF 19): First working group meeting
- June 2008 (OGF 23): Draft specification opened to public comment
- August 2008: Public comment period ended
- November 2008: Started addressing comments
- January 2009: Final specification ready
- March 2009 (OGF 25): GLUE 2.0 becomes an official OGF standard
 - http://www.ogf.org/documents/GFD.147.pdf
 - Will also soon have rendering specifications for LDAP and XML
- 1st April 2009: Start work on Glue 2.1 ②
 - Some concepts known to be somewhat fuzzy
 - No doubt we will find problems with 2.0 once we start implementing!

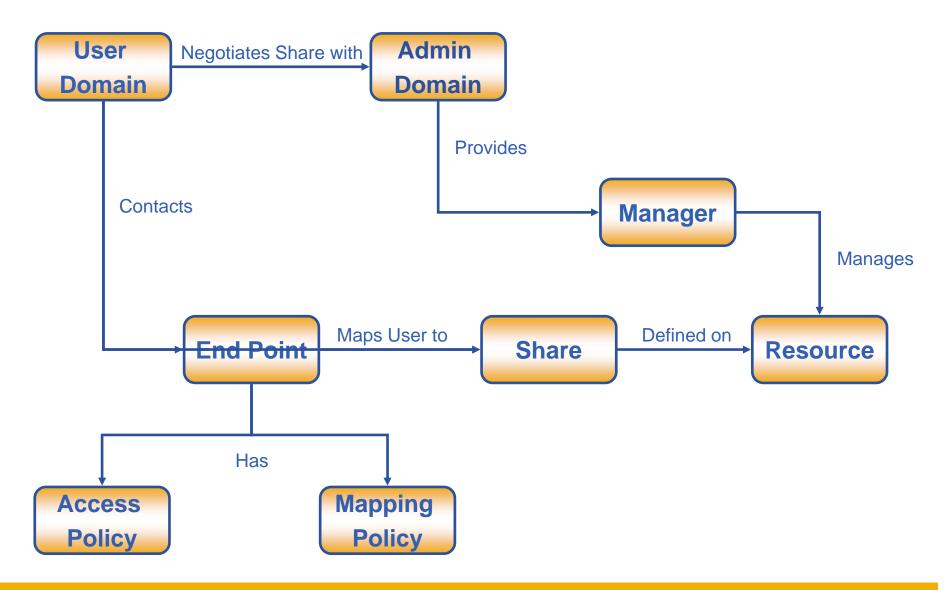
Some statistics

- ~ 60 phone conferences
 - 1.5-2 hours each, so ~ 5 days talking
 - ~5 people participating, so ~ 4 months FTE invested in total
 - This does not include the time invested by editor (OMII-Europe)
- ~ 1000 emails in the GLUE mailing list
- ~50 draft versions of the specification document
 - 2 years from first meeting to final version
 - Document updated nearly every week (public comment period excepted)
 - 76 pages, 27609 words
- ~ 18 sessions in 7 OGF events
- ~ 40 issues gathered from public comments
 - + ~60 more issues left to be discussed after public comments
- Schema defines 246 attributes in 35 objects
 - Not counting relations or inherited attributes
- Three different renderings
 - LDIF, XML, Relational
 - + RDF? + CIM??

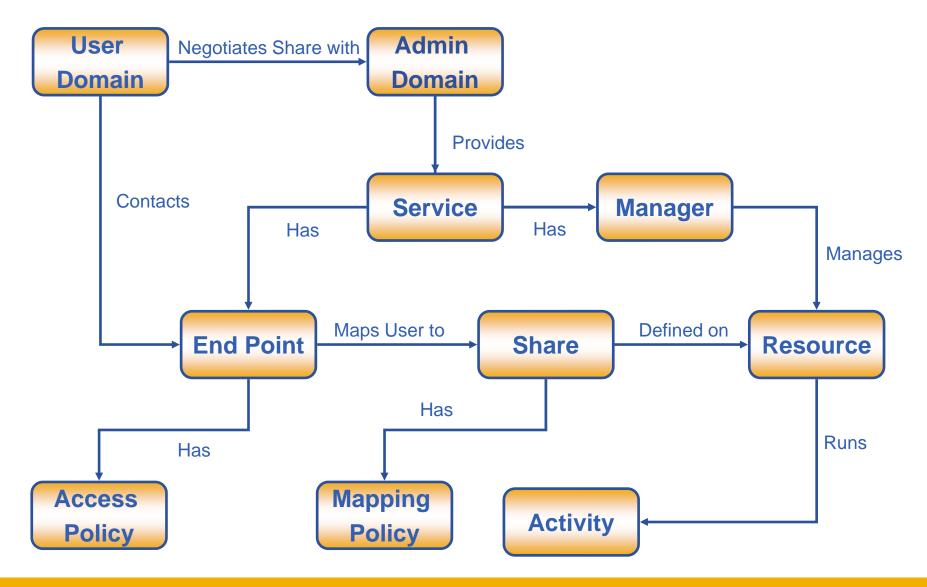

Glue 2.0 Key Concepts

User Domain Domain Provides

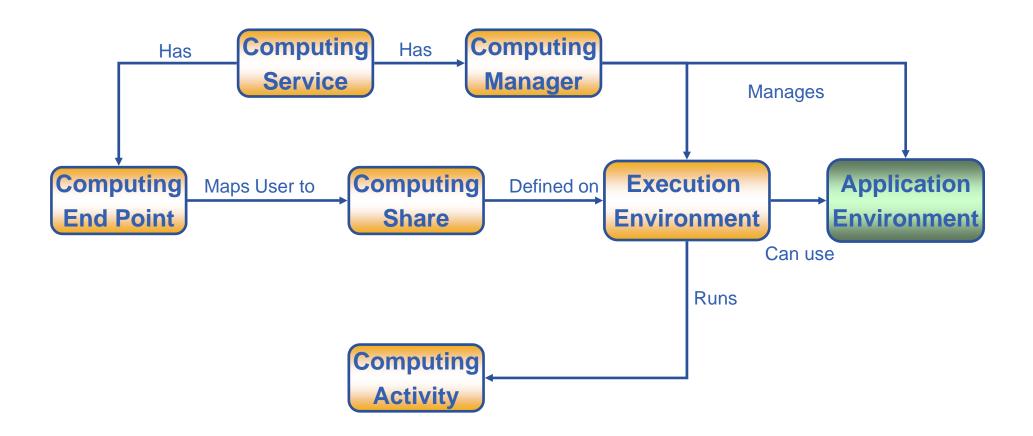
Utilizes Resource



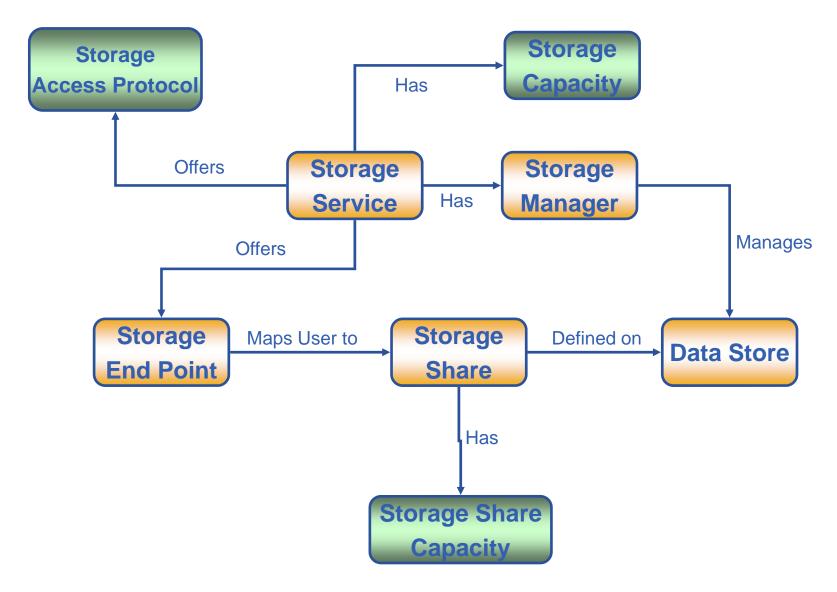
Glue 2.0 Key Concepts



Glue 2.0 Key Concepts



Glue 2.0 key concepts



Glue 2.0 computing schema

Glue 2.0 storage schema

Changes in terminology

- GLUE 2 looks a bit different to GLUE 1, but most of the concepts are there under different names
 - Site -> AdminDomain
 - (VO) -> UserDomain
 - Element -> Service
 - Service -> Endpoint
 - AccessControlBaseRule -> AccessPolicy, MappingPolicy
 - CE, VOView -> ComputingManager, ComputingShare
 - Remove duplication/double counting
 - Cluster/SubCluster -> ExecutionEnvironment
 - (Job) -> Activity
 - SA/VOInfo -> StorageShare
- Existing attributes should all map to something
 - Unless they were unused
 - All existing use cases should be met
- Some new things introduced for use cases from other Grids
 - EGEE/LCG won't publish everything
 - We will have a profile document to specify how we use the schema

Major changes from GLUE 1

- Generic concept of a Service as a coherent grouping of Endpoints,
 Managers and Resources
 - ComputingService and StorageService are specialisations, sharing a common structure as far as possible
 - Generic concepts for Manager (software) and Resource (Hardware)
- All objects are extensible
 - Multivalued string "OtherInfo" and/or Key-Value pairs
- All objects have a globally unique ID
- Many objects allow many-to-many relations
 - More flexible, but more complex
- Some concepts made more generic/flexible by making them separate objects rather than attributes
 - Location, Contact, Policy, Benchmark, Capacity
- More complete/rigorous definitions
 - Many more enumerated types but not fully defined yet
 - Placeholder values, case sensitivity, optional vs mandatory
 - People will no doubt still find ambiguities!

Why is this good for LCG/EGEE?

- General structure for any service
 - CE, SE, WMS, VOMS, MyProxy, LFC, FTS, ...
 - Generic service discovery tool
- Much more expandable
 - All objects can be extended
 - We always find new cases we didn't anticipate
 - Schema upgrades can take a long time
- Fixes many long-standing problems
 - No showstoppers, but many annoying "features"
 - StorageService designed for SRM!
 - ComputingService has a better separation of Grid endpoint, LRMS and queue/fairshare
- Interoperability and standardisation
 - Brave new world: EGEE -> EGI
 - Brings ARC into the fold
 - May get external implementations

Service discovery

- Working towards publication for all services
 - WMS, LCG-CE, CREAM, LB, SRM, FTS, LFC, BDII, MyProxy, Hydra, AMGA, VOMS, R-GMA, VOBOX, Nagios, ...
 - In place or in progress
 - Using GLUE 1.3 GlueService/GlueServiceData
 - Somewhat limited in scope
- Some generic service discovery tools
 - lcg-info, glite-sd-query
- GLUE 2.0 allows publication of any service in a generic way, with as much structure as needed
 - Will need to get some experience
 - Start by mapping existing Service to GLUE 2 Service + Endpoint
 - Add more objects if it seems useful
- Should be possible to have a more powerful generic query tool
 - Including Computing and Storage Services
 - Some work in the OGF SAGA working group

SRM usage

- SRM v2.2 introduced fairly recently with several new features
 - "Space tokens"
- GLUE 1.3 was defined with SRM in mind, but little practical experience
 - Usage in LCG is still evolving
- So far we tried to fit publication into the GLUE 1.3 model
 - Somewhat clumsy but possible
 - Generic SACapability attribute to carry extra information about space tokens
- Various SRM issues still not totally clear
 - Logical vs physical view of spaces
 - Treatment of dynamic reservations, unreserved space, staging/cache
- LCG model doesn't exactly match SRM model
 - Underlying hardware (tape/disk) vs functional description (custodial/replica) and latency (online/nearline)
 - Scratch space, shared spaces
- For GLUE 2.0 we tried to cover the use cases we know about
 - Schema has more flexibility to add new things
 - Which also means more complexity
 - We may still find problems as we implement GLUE 2.1!

Resource accounting

- Accounting wasn't an intended use case for GLUE 1 or GLUE 2
 - Schema has no history, just a current snapshot
 - Fine-grained publication would give too much data volume
 - No encryption or signing of data in the BDII world-readable
- For storage LCG currently has no other solution
 - Can do accounting at the level of space tokens
 - Regular copy to an independent database
- LCG management want extra information for both computing and storage
 - Distinguish installed capacity (static) from available capacity (dynamic)
 - VO shares of resources
 - Dealing with multicore CPUs, new benchmark (HEP-SPEC06)
 - Scaling of CPU/wall times in batch system to a reference benchmark
- New <u>document</u> defines the use of GLUE 1.3 attributes for these cases
 - Possible but somewhat clumsy
 - Not rolled out yet watch this space!
- For GLUE 2 some of these things are explicitly supported
 - Multiple benchmarks, time scaling, installed vs available capacity, VO Shares
 - Storage accounting will be largely unchanged
 - May have scope to publish things which can't be done in GLUE 1.3
 - ComputingActivity can be a source of usage records for CPU accounting

Implementation plan

- Define LDAP schema and deploy in BDIIs
 - 1.3 and 2.0 together in parallel
 - Should be no impact apart from extra data volume
 - By summer 2009
- Write and deploy information providers to populate the new objects
 - Can be rolled out incrementally
 - Most services fairly simple first version by the end of 2009?
 - ComputingService and StorageService more complex, many different providers
 by the end of 2010?
- Update clients to look at the new information
 - Workload management, data management, service discovery, monitoring, accounting, user, ...
 - Upgrades should be backward-compatible
 - Aim for the end of 2011??
- Switch off GLUE 1 publishing
 - Only when everything has been upgraded
 - **-** 2012???
- NB EGEE ends in 2010!

Summary

- The GLUE schema has developed over 8 years of practical use by EDG/LCG/EGEE
 - And other Grids
- It has proved to be sufficient to allow many users to submit large numbers of jobs, manage data and monitor the Grid
 - No show stoppers, but many rough edges and known problems
- The right time for a major new version
 - Incorporates all our experience, and input from many other Grids
 - OGF backing makes this a worldwide Grid standard
 - Should help with interoperability and buyin
- GLUE 2.0 should cover all current use cases for LCG/EGEE
 - And allow things we can't do at the moment
 - And be much more flexible for the cases we still haven't anticipated
- Will be rolled out starting ~now, but the transition process will take several years
 - Progress report at CHEP 2010?!

References

- OGF GLUE working group home page
 - http://forge.ogf.org/sf/projects/glue-wg
- GLUE 2.0 specification
 - http://www.ogf.org/documents/GFD.147.pdf
- GLUE 1.3 specification
 - http://glueschema.forge.cnaf.infn.it/Spec/V13
- "Usage of Glue Schema v1.3 for WLCG Installed Capacity information"
 - https://twiki.cern.ch/twiki//pub/LCG/WLCGCommonComputingReadinessChallenges/WLCG_GlueSchemaUsage-1.8.pdf