GEANT4 10.1 highlights *kernel modules*

Gabriele Cosmo, CERN PH-SFT

for the Geant4 Collaboration

Outline

- Major features introduced in release 10.1
 - Geometry
 - Kernel & Interfaces
 - Visualization
 - Physics (see talks by V.Ivantchenko and A.Ribon)
- > Detailed release notes:
 - <u>http://geant4.cern.ch/support/ReleaseNotes4.10.1.html</u>
- > All planned features for 2014:
 - <u>http://geant4.cern.ch/support/planned_features.shtml</u>

Geant4 10.01

Consolidation release

- Consolidation of multi-threading and improved thread-safety
 - Improved memory footprint
 - Improved memory management
- Improved CPU performance for both sequential and MT modes
- Extended set of primitives for USolids
 - USolids module now external
 - Updated GDML schema
- Revised policy for the treatment of ions and isomers
- Bug fixes & some new features
- Updated documentation

Multi-threading

Memory management

- Many fixes, improvements for multi-threading
 - Fixed issues of thread safety
 - Further sharing by making const more shared classes/data
- Benchmark: LHC detector geometry -CMS 2008 (10⁶ volumes, 300 materials, no hits or trajectories)
 - Each additional thread requires less memory 10 MB (reduced from 19MB) excluding hits
 - Rough estimate of savings is 100-200
 MB/thread depending on physics setup
- Feedback from CMS (100 t-tbar events CMSSW full simulation) on release 10.0 with MT
 - 1.2 GB memory shared
 - 200 MB additional memory per-thread
 - i.e.: multi-processing on 12 threads: 12*1.4 = 16.8 GB

multi-threading on 12 threads: 12*0.2 + 1.2 = 3.6 GB

G.Cosmo - Geant4 release 10.1 highlights - kernel modules

Multi-threading

Memory management - GPS

- Considerably improved memory management for General Particle Source primary particles generator
- Benchmark: proton-therapy application using GPS with hundred of point-sources each with its own distribution
 - Adopting sharing of distributions and other "read-only" data
 - Replaced C-arrays with more efficient STL containers

Performance

Improved speed for sequential/MT modes

Considerably improved CPU speedup and excellent MT linearity

Geometry

Geometrical primitives - USolids

- <u>AIDA Unified Solids library</u> update
 - As optional component, for replacing the original solids (G4GEOM_USE_USOLIDS flag)
 - Was embedded in 10.0 inside geometry module; can be adopted as external separate library in 10.1
 - Going to evolve with new and even more optimised implementations from VecGeom
- Optimised implementation and bug fixes for several shapes
 - UPolycone in particular
 - Included new shapes
 - UExtrudedSolid, UGenericTrap, Utrap
 - New UMultiUnion structure
 - Replaces multiple use of 'binary' Boolean unions for volumes with same material
 - Benefits above 3-4 components
 - Supported in GDML, version 3.1.1

Please, try it out and give us your feedback!

14 January 2015

G.Cosmo - Geant4 release 10.1 highlights - kernel modules

Physics Lists

- Updated physics lists combinations and options
 - Switched on muon-nuclear by default in all lists
 - Cut on proton set to zero, to simulate all recoils from elastic scattering, in physics lists using neutron-HP
 - Trying out new hadron elastic scattering, still in development, in the experimental physics-list FTFP_BERT_TRV
 - Restructured G4OpticalPhysics constructor and changed UI commands to allow for different particles to have specific settings of optical parameters
 - New experimental lists for Shielding and Neutrino physics

More features ... Highlights

- Adopted fast implementations of exp() and log() from VDT first in 10.0
 - Use expanded in 10.1 with benefit in CPU performance
- Introduced memory pool for reuse of G4NavigationHistory objects
 - Replacing use of G4EnhancedVectorAllocator to improve memory churn
- Introduced adoption of "workspaces" for particles and physics-lists MT data
 - Completely transparent to the user
 - Step forward towards better memory handling model also with TBB
- New framework for "generic" biasing for physics-based biasing – first in 10.0
 - Now providing easier access to crosssections/mean-free-paths of wrapped physics
- Ionspandssomers now instantiated during the event loop as they become necessary
 - Pre-instantiation still possible through UI command
- First support for "phonon" physics propagation in kernel

More features ...

Visualization & Analysis

- Evolved Qt UI/GUI
 - Interactive settings of viewer parameters
 - Ability to detach panels
 - Improved picking features
 - Addition of "Useful Tips"
- Improved support for multithreading
 - Ability to select output by thread
- New/improved UI commands

- Enhancements to analysis module
 - Support for CSV and XML Ntuples

External libraries and data sets

- Adopting new CLHEP version 2.2.0.4
 - Converted statics and globals to const, thread_local or atomic to improve thread-safety
 - Required for multi-threading and C++11 enabled setups
 - Still compatible with older CLHEP releases
- Updated data sets:
 - G4EMLOW-6.41, G4NDL-4.5 (compressed), RadioactiveDecay-4.2, G4PhotonEvaporation-3.1

10.1: more ...

- <u>Configuration (Cmake)</u>
 - Enabled support for "offloading" on Xeon-Phi co-processors
- <u>Particles</u>
 - Updated particle properties to PDG-2014
- <u>G4Py</u>
 - Updated interfaces and completed migration to CMake for building libraries
- <u>Examples</u>
 - Migrated most examples to allow use of multi-threading

Platforms for 10.1

- Linux SLC6, gcc-4.4.7, 4.7.X, 4.8.X, 64 bits
- MacOSX 10.9, gcc-4.2.1/clang-3.5, 64 bits
- Windows 7, Visual C++ 12.0 (Visual Studio 2013)
 - No support for multi-threading on Windows yet
- Also tested:
 - Linux, gcc-4.9, icc-14, icc-15
 - Linux Ubuntu 12, gcc-4.6
 - MacOSX 10.10, gcc-4.2.1/clang-3.5, 64 bits
 - Windows 7, VC++-9.0/10.0/11.0
 - Intel Xeon-Phi co-processor, icc-15

Thanks!