
Status of CMS’
Threaded Framework

Christopher Jones FNAL

CMS Threading Status Concurrency Forum 3/12/2014

Overview
Status

Performance Measurements

Future Work

Conclusion

2

CMS Threading Status Concurrency Forum 3/12/2014

Status
Have had a working integration build (IB) since beginning of July
All threading changes were merged into main CMS release at that time	

All threading problems seen in IB have been fixed
Most were problems in ROOT which are now patched	

All IB validation workflows (sim, reco, etc.) are working with multiple threads	

All conditions related products are now thread-safe
They can be accessed by multiple events simultaneously	

Converted “easy-case” RECO modules to stream modules in July
Additional thread safety changes will allow more modules to be converted	

Have been using threads in Tier0 RECO replay
Using the October release	

Have begun doing scale tests on the Grid
Looking at job CPU efficiency

3

CMS Threading Status Concurrency Forum 3/12/2014

Performance
Performance is limited by code which must run sequentially

Causes of sequential code in CMS
Legacy modules	

Modules which have not been modified to be thread friendly
Only one legacy module can run at a time

‘One’ modules	

An instance of a ‘One’ module can only process 1 event at a time

Run and Lumi transitions	

Must finish processing all events in a Lumi before going to next Lumi

To keep 8 cores 95% busy need 99.2% of code to run in parallel

4

CMS Threading Status Concurrency Forum 3/12/2014

Workflow Performance
Concentrated on getting good efficiency from RECO
Tracking group has worked to make all their modules thread efficient	

DQM has been working to convert all their modules to be thread friendly	

Work ongoing to be able to use parallel Geant4
Initial implementation is working

5

CMS Threading Status Concurrency Forum 3/12/2014

RECO Measurements
Machine
2 CPUs each with 8 Cores 	

AMD Opteron 6320 Core 	

64GB RAM	

Job Configuration
RECO sequence	

TTBar Monte Carlo	

25ns bunch spacing	

Average of 40 interactions per crossing	

Measurement Procedure
Run N single threaded jobs	

Run 1 multi-threaded job using N threads	

Results were shown at ACAT
Liz Sexton-Kennedy, Patrick Gartung and myself contributed to measurements

6

CMS Threading Status Concurrency Forum 3/12/2014

Throughput Measurement

For 8 threads we see a 93% efficiency for threaded compared to
single threaded

7

Normalized Throughput

N
o

rm
a
li
ze

d

T
h

ro
u

g
h

p
u

t
(e

ve
n

t/
u

n
it

 t
im

e
)

0

2

4

6

8

10

12

14

Number of Cores Used

0 4 8 12 16 20 24

Normalized	
 event	
 throughput,	
 single	
 mul;-­‐threaded	
 job
Normalized	
 event	
 throughput,	
 mul;ple	
 single	
 threaded	
 jobs

Ratio of Event Throughput

T
h

ro
u

g
h

p
u

t
R

a
ti

o

0.8

0.85

0.9

0.95

1

Number of Cores Used

0 4 8 12 16 20 24

CMS Threading Status Concurrency Forum 3/12/2014

Memory Measurement

At 8 cores, single threaded is 3.5x memory than multi-threaded
8 single threaded jobs: 14.2GB	

1 multi-threaded job: 4.1GB

8

Max RSS

M
a
x
 R

S
S

 (
M

B
)

0

10,000

20,000

30,000

40,000

50,000

Number of Cores Used

0 4 8 12 16 20 24

max	
 RSS,	
 single	
 mul;-­‐threaded	
 job
max	
 RSS,	
 mul;ple	
 single-­‐threaded	
 jobs

Ratio of Max RSS

M
a
x
 R

S
S

 R
a
ti

o

0

1

2

3

4

5

Number of Cores Used

0 4 8 12 16 20 24

CMS Threading Status Concurrency Forum 3/12/2014

Network Measurement

Captured Network Usage on the Machine
1st half are the single-threaded jobs going from 1to 24 simultaneous jobs	

2nd half are the multi-threaded jobs going from 1 to 24 threads	

What is seen is related to conditions

9

CMS Threading Status Concurrency Forum 3/12/2014

Small LuminosityBlock

Monitored CPU utilization
Can see end LuminosityBlock synchronization affects efficiency	

Fewer events in a LuminosityBlock means more serialization

Previous measurements done with 1 LuminosityBlock

10

100 Events per LuminosityBlock All Events in 1 LuminosityBlock

CMS Threading Status Concurrency Forum 3/12/2014

GEN-SIM Measurements

Brand new results from Simulations group
Used 12 core machine where N jobs * N threads == 12 for all measurements	

Throughput per core very flat
Shows good scaling to 12 cores	

Memory consumption much less than single threaded jobs
1 jobs with 12 threads < 2.6GB 	

12 jobs each with 1 thread > 10 GB	

~200MB memory increase per thread

11

Simulation Scaled Throughput/Core: 13 GeV TTbar

Sc
al

ed
 E

ve
nt

 T
hr

ou
gh

pu
t/C

or
e

(E
ve

nt
s/

U
ni

t T
im

e)

0

0.2

0.4

0.6

0.8

1

Threads Used By Job
0 2 4 6 8 10 12

Simulation Total RSS Measurements: 13 GeV TTbar

To
ta

l R
SS

 (M
B)

0

2,200

4,400

6,600

8,800

11,000

Threads Used By Job
0 2 4 6 8 10 12

Multi-Threaded
Single Threaded

CMS Threading Status Concurrency Forum 3/12/2014

Future Work
Use tasks instead of mutex to control non-stream modules
Now a non-stream module can block the use of a thread	

Switching to tasks would allow other work to happen on the thread
Still would only have 1 module run per Event	

Event data products not thread safe yet
Would allow modules to internally use their own tasks	

i.e. sub-module level parallelism
Requires ‘consumes’ migration to be finished	

modules must now register what data they will ‘consume’
‘hard’ 1% are left

Needed for further threading changes	

Run multiple modules per event
Requires switching to task base modules (see previous bullet)	

Framework could schedule around non-stream based modules	

Increased CPU efficiency
Mitigates some of the LuminosityBlock synchronization efficiency problem	

Last events in LuminosityBlock get to use the ‘freed’ threads which ran finished events
Can be used to decrease memory used by a job but keep CPU efficiency	

Amount of memory used in a job is dependent on # of events processed simultaneously
Use # threads > # events takes less memory

12

CMS Threading Status Concurrency Forum 3/12/2014

Future Work Continued
Run multiple simultaneous LuminosityBlocks/Runs
API of Framework is built to accommodate this	

Requires no module in job needing to see 1 Lumi/Run at a time	

no legacy in job
no ‘one’ module in job where module says it needs to see Lumis or Runs

13

CMS Threading Status Concurrency Forum 3/12/2014

Conclusion
High pileup SIM & RECO jobs have good CPU efficiency for 8
Cores

Present efficiency is good enough for CMS’ Run 2 needs

Future work will allow even higher CPU efficiency

14

