Status of CMS' Threaded Framework

Christopher Jones FNAL

Overview

Status

Performance Measurements

Future Work

Conclusion

Status

Have had a working integration build (IB) since beginning of July All threading changes were merged into main CMS release at that time

All threading problems seen in IB have been fixed Most were problems in ROOT which are now patched All IB validation workflows (sim, reco, etc.) are working with multiple threads

All conditions related products are now thread-safe They can be accessed by multiple events simultaneously

Converted "easy-case" RECO modules to stream modules in July Additional thread safety changes will allow more modules to be converted

Have been using threads in Tier⁰ RECO replay Using the October release

Have begun doing scale tests on the Grid Looking at job CPU efficiency

Performance

Performance is limited by code which must run sequentially

Causes of sequential code in CMS

Legacy modules

Modules which have not been modified to be thread friendly Only one legacy module can run at a time

'One' modules

An instance of a 'One' module can only process 1 event at a time

Run and Lumi transitions

Must finish processing all events in a Lumi before going to next Lumi

To keep 8 cores 95% busy need 99.2% of code to run in parallel

Workflow Performance

Concentrated on getting good efficiency from RECO Tracking group has worked to make all their modules thread efficient DQM has been working to convert all their modules to be thread friendly

Work ongoing to be able to use parallel Geant4 Initial implementation is working

RECO Measurements

Machine

2 CPUs each with 8 Cores AMD Opteron 6320 Core 64GB RAM

Job Configuration
RECO sequence
TTBar Monte Carlo
25ns bunch spacing
Average of 40 interactions per crossing

Measurement Procedure
Run N single threaded jobs
Run I multi-threaded job using N threads

Results were shown at ACAT Liz Sexton-Kennedy, Patrick Gartung and myself contributed to measurements

Throughput Measurement

For 8 threads we see a 93% efficiency for threaded compared to single threaded

Memory Measurement

At 8 cores, single threaded is 3.5x memory than multi-threaded

8 single threaded jobs: I4.2GB

I multi-threaded job: 4. I GB

Network Measurement

Captured Network Usage on the Machine 1st half are the single-threaded jobs going from 1 to 24 simultaneous jobs 2nd half are the multi-threaded jobs going from 1 to 24 threads

What is seen is related to conditions

Small Luminosity Block

100 Events per LuminosityBlock

All Events in 1 LuminosityBlock

Monitored CPU utilization

Can see end LuminosityBlock synchronization affects efficiency

Fewer events in a LuminosityBlock means more serialization

Previous measurements done with 1 LuminosityBlock

GEN-SIM Measurements

Brand new results from Simulations group

Used 12 core machine where N jobs * N threads == 12 for all measurements

Throughput per core very flat Shows good scaling to 12 cores

Memory consumption much less than single threaded jobs

I jobs with I2 threads < 2.6GB
I2 jobs each with I thread > I0 GB
~200MB memory increase per thread

Future Work

Use tasks instead of mutex to control non-stream modules

Now a non-stream module can block the use of a thread Switching to tasks would allow other work to happen on the thread

Still would only have I module run per Event Event data products not thread safe yet

Would allow modules to internally use their own tasks i.e. sub-module level parallelism

Requires 'consumes' migration to be finished modules must now register what data they will 'consume' 'hard' 1% are left

Needed for further threading changes

Run multiple modules per event

Requires switching to task base modules (see previous bullet) Framework could schedule around non-stream based modules Increased CPU efficiency

Mitigates some of the LuminosityBlock synchronization efficiency problem Last events in LuminosityBlock get to use the 'freed' threads which ran finished events

Can be used to decrease memory used by a job but keep CPU efficiency
Amount of memory used in a job is dependent on # of events processed simultaneously
Use # threads > # events takes less memory

Future Work Continued

Run multiple simultaneous LuminosityBlocks/Runs

API of Framework is built to accommodate this Requires no module in job needing to see I Lumi/Run at a time

no legacy in job

no 'one' module in job where module says it needs to see Lumis or Runs

Conclusion

High pileup SIM & RECO jobs have good CPU efficiency for 8 Cores

Present efficiency is good enough for CMS' Run 2 needs

Future work will allow even higher CPU efficiency