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Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermo-dynamical fluctuations. We discuss a method
of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the
Abstract: transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific
heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of

beam energy. These results are compared to calculation from AMPT event generator, HRG model and lattice calculations.
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