# Unravelling Medium Effects in Heavy Ion Collisions with Zeal 

Rajiv Gavai

TIFR, Homi Bhabha Road, Navy Nagar, Mumbai 400005, India

## Summary

## - A new jet observable zeal [1]

- Less sensitive to cone radius $R$
- Capable of distinguishing models


## Introduction

Models have been very successful in predicting the quenching $\left(R_{A A}\right)$ of the leading particle but differ in details. Differ in physical characterizations of the medium ( $\hat{q}$ ).


The original vision [2], quenching of the jet, now accesible thanks to the LHC.


Figure 1: Jet $R_{A A}$ (ATLAS hep-ex/1411.2357)
The suppression depends on the cone radius.



Figure 4: Ratio of zeals to $p p$ for $p_{T}=100 \mathrm{GeV}$ jets

## Comparing models

We plot the histogram of zeals obtained for 200,000 events. In Fig. 2 (3), we plot zeal distributions for jets with $p_{T}=10(100) \mathrm{GeV}$. Different colors indicate different values of $\hat{q} L$.


Figure 2: Zeal distribution for jets with $p_{T}=10 \mathrm{GeV}$


Figure 3: Zeal distribution for jets with $p_{T}=100 \mathrm{GeV}$
One can clearly see that increasing $\hat{q} L$ shifts the zeal distribution to smaller values.

## We define,

$$
\begin{equation*}
Z=-\left[\log \left(\sum_{i} \exp \left[-p_{T} /\left(\hat{n}_{T} \cdot \vec{p}\right)\right]\right)\right]^{-1} \tag{1}
\end{equation*}
$$

To generate events, we partition the energy $E$ into partons carrying a fraction $x=\exp (\xi)$ chosen randomly according to a probability distribution function which is identical to the predicted distribution function of partons given in Ref. [3] (see Fig. 4 in Ref. [3]).

## Results

gluon distribution given for the models GLV [4] AMY [5], and ASW [6] in Fig. 19 of Ref. [7]. The model parameters chosen such that the value of $R_{7}$ - the suppression of a $p_{T}$ spectrum falling with the power $1 / p_{T}^{7}$ - is 0.25 when the leading parton traverses a QGP brick of length $L=5 \mathrm{fm}$. We generate ensembles of events for the initial injected energy of 20 GeV partitioned into partons carrying a fraction $x$ chosen according to the distribution given in Ref. [7]. We find it very satisfying that even when the models are tuned to give the same suppression, the zeal distribution is able to distinguish between them Fig. 5, in particular showing a significant difference between the AMY and the GLV models.


Figure 5: Comparing models

> Conclusions

The zeal [Eq. 1] depends on the distribution of par-

## New observable: Zeal

 ticles in the jets and therefore is more discriminating than $R_{A A}$ of the leading partons.Other jet shape measures like the value of $R_{A A}$ as a function of jet cone radius [8, 9] have also been previously studied to analyze the distribution of partons in jets.
The advantages of the zeal distribution are

- It weighs the energetic partons more heavily and hence is particularly sensitive to the processes that lead to the energy loss of the leading parton.
- One can use large values of jet cone radii $r$ to extract the $p_{T}$ of the jet. This turns out to be very useful because we expect jets to be wider in $A A$ compared to $p p$ collisions due to broadening and this will reduce the systematics associated with the extraction of the $p_{T}$ of the jets, and hence the calculation of zeal.
It will be interesting to see how these results are affected by hadronization. We are currently pursuing this study and are planning its application to actual experimental data.

References
[1] Rajiv Gavai, Ambar Jain, and Rishi Sharma 2015
[2] JD Bjorken
Fermilab-Pub-82/59-THY, 1982
[3] NÃIstor Armesto, Gennaro Corcella, Leticia Cunqueiro, and Carlos A. Salgado.
JHEP, 2009(11):122, 2009.
[4] Miklos Gyulassy, Peter Levai, and Ivan Vitev. Nucl. Phys., B571:197-233, 2000.
[5] Peter Brockway Arnold, Guy D. Moore, and Laurence G Yaffe.
JHEP, 12:009, 2001.
[6] Nestor Armesto, Carlos A. Salgado, and Urs Achim Wiedemann. Phys. Rev., D69:114003, 2004.
[7] Nestor Armesto et al. Phys. Rev., C86:064904, 2012.
[8] Ivan Vitev, Simon Wicks, and Ben-Wei Zhang. JHEP, 11:093, 2008
[9] Jorge Casalderrey-Solana, Doga Can Gulhan, JosÃl Guilherme Milhano, Daniel Pablos, and Krishna Rajagopal. 2015.

We acknowledge the kind hospitality of WHEPP-13 where this work was initiated. RVG and AJ acknowledge gratefully the support of the J. C. Bose Fellowship and Ramanujam

