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2 Outline

Empirically, hot QGP ≡ PQCD AND pQCD AND NOT pA
(cf.Gyulassy, arXiv:nucl-th/0403032)

● Key results related to 
bulk properties in pPb 
and pp at high Nch

● Discussion 

ALICE results: http://aliceinfo.cern.ch/ArtSubmission/publications

ATLAS results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

CMS results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Only a selection of all available results shown, find them all here:

http://arxiv.org/abs/nucl-th/0403032
http://aliceinfo.cern.ch/ArtSubmission/publications
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN


3 Observation of double ridge in p-Pb

● Suppress non-flow by subtracting per-trigger yields from low mult. 

– Checked that per-trigger yields in 60-100% are similar to pp 

– For large Nch, can use η-gap method instead 

ALICE, PLB 719 (2013) 29

0-20% 60-100%

ATLAS, PRL 110 (2013) 182302

http://arxiv.org/abs/arXiv:1212.2001
http://arxiv.org/abs/arXiv:1212.5198


4 Key features of double ridge arXiv:1409.1792

● vn coefficients

– Significant vN (n=2 to 5) with 
“familiar” ordering + shape in pT

– Substantial to even high pT

http://arxiv.org/abs/1409.1792
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8 Key features of double ridge arXiv:1409.1792

arXiv:1502.05382

arXiv:1307.3237

Features qualitatively similar 
to those seen in Pb-Pb collisions. 
Suggests similar physics at place?
(Note: no direct evidence of jet quenching)

arXiv:1409.3392

● vn coefficients

– Significant vN (n=2 to 5) with 
“familiar” ordering + shape in pT

– Substantial to even high pT

● Multi-particle correlations

– All particles correlated 
(v2{4}≈v2{6}≈v2{8}≈v2{LYZ})

● Particle species dependence

– Crossing of v2(p) with v2(pi) 
at pT about 2 GeV/c 
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9 Pseudo-rapidity dependence
LHCb-CONF-2015-004

2<η
lab

<4.9

● Ridge extends to 2<ηlab<4.9

https://cds.cern.ch/record/2037107?ln=en
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11

2.5<η
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(*) Event-plane angle decorrelation 
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Inclusive muon v2 (*)
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Pseudo-rapidity dependence
LHCb-CONF-2015-004

2<η
lab

<4.9

● Ridge extends to 2<ηlab<4.9

● Flat η-dependence  

● Inclusive muon v2 measured

– Above 2 GeV/c sensitive to 
muons from HF decays

ALICE, arXiv:1506.08032

CMS-PAS-HIN-15-008

v2

η

http://arxiv.org/abs/1506.08032
https://cds.cern.ch/record/2037107?ln=en
http://arxiv.org/abs/1506.08032


13 NS ridge in pp

The ridge yield does not significantly change with collision energy
(Confirmation by two experiments!)

CMS-FSQ-PAS-15-002

ATLAS-CONF-2015-027

http://cds.cern.ch/record/2037663


14 The double ridge in pp – before subtraction
CMS-FSQ-PAS-15-002
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● Scale low multiplicity yield by 

ratio of NS jet yield in high 
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by ALICE usually for 
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arXiv:1212.2001)
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19 v2 in pp (at 7 TeV)
● Scale low multiplicity yield by 

ratio of NS jet yield in high 
over low (after subtracting the 
long range correlation in both)

v2(pp) ≈ 4% at high M v3(pp) ≈ 1.2% at high M

CMS-FSQ-PAS-15-002

MM



20 Double ridge in pp (at 13 TeV) ATLAS, arXiv:1509.04776

● Peripheral subtraction via template fit 
to determine F and v2,2

● Two particle coefficients found to 
factorize into single particle ones

http://arxiv.org/abs/1509.04776
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23 Double ridge in pp (at 13 TeV) ATLAS, arXiv:1509.04776

● Peripheral subtraction via template fit 
to determine F and v2,2

● Two particle coefficients found to 
factorize into single particle ones

● At low Nch ambiguity whether to allow 
or not a v2,2 component in peripheral

– Role of different event types 
(diffraction) in low M events?

– My view: for now take it as method 
uncertainty on v2 at low M

v2

M
v2

M
Result reported above 20

http://arxiv.org/abs/1509.04776


24 v2(pT) in pp ATLAS, arXiv:1509.04776

● Multiplicity independence (unambiguous for M>~70)

ATLAS
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26 v2(pT) in pp ATLAS, arXiv:1509.04776

● Multiplicity independence (unambiguous for M>~70)

● Collision energy independence 

– Also consistent with the CMS data at 7 TeV 

CMS, 7 TeV
(110<Ntrk<150)

ATLAS

http://arxiv.org/abs/1509.04776


27 PID dependence of v2 in pp CMS-FSQ-PAS-15-002

Mass ordering and crossing (?) in low pT region for high multiplicity



28 Particle ratios vs multiplicity

Steady release of canonical suppression with increasing M

(same for Λ, less so for Ω, and Φ≈flat)



29 Summary (observables)
● Low pT spectra (radial flow): yes, yes↑, yes↑ 

● Particle ratios: GC level, except Ω ≈ at high Nch, similar trend

● Statistical model: GC (to 10-30%), γs≈1 (larger deviations), γs<1 (MB) 

● Azimuthal anisotropy (vn): n=1-6, n=1-5, n=2,3

– Higher order cumulants: v2{4}=...=v2{LYZ}, v2{4}=...=v2{LYZ}, subtr. only  

– Characteristic pT shape: yes, yes, yes (subtr. only)

– Characteristic multiplicity dep.: yes, yes, ?

– Weak η dependence: yes, yes, -

● Mass dependence: v2,v3, v2,v3 (only subtr.), v2 (only subtr.)

● Factorization breaking: yes, yes, ?

● vn distributions: yes, -, -

● Event angle and vN correlations: yes, -, -

● HBT radii (kT, Rout/Rside): yes,1, yes,≈1, yes,<1

● Suppression (energy loss): yes, ?, -

Pb-Pb, p-Pb, pp (at high M)
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● Low pT spectra (radial flow): yes, yes↑, yes↑ 

● Particle ratios: GC level, except Ω ≈ at high Nch, similar trend

● Statistical model: GC (to 10-30%), γs≈1 (larger deviations), γs<1 (MB) 

● Azimuthal anisotropy (vn): n=1-6, n=1-5, n=2,3
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– Characteristic multiplicity dep.: yes, yes, ?

– Weak η dependence: yes, yes, -
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● vn distributions: yes, -, -

● Event angle and vN correlations: yes, -, -

● HBT radii (kT, Rout/Rside): yes,1, yes,≈1, yes,<1

● Suppression (energy loss): yes, ?, -

Pb-Pb, p-Pb, pp (at high M)

● Weak collectivity proven in Pb-Pb and 
p-Pb, not known in pp

● Strong collectivity (thermo +hydro 
dynamics) compatible with most 
Pb-Pb and p-Pb

● Only limited amount of data in pp at 
high Nch but compatible with SC

– Not unreasonable to expect 
pp≈pPb at high Nch!



33 What is the underlying physics?
● Hypothesis: 

The Physics underlying the strong collectivity is the same 

– sQGP: thermo and hydrodynamics (maybe “at the edge”) (→Piotr)
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39 Taking a look back...

● Larger than expected Cu-Cu v2 lead to 
postulation of importance of geometry 
fluctuations and participant eccentricity

● Geometry fluctuations successfully 
predicted flow fluctuations 

● Resulted in prediction for triangular flow 
based on “analogy” arguments

● Triangular flow visible in Pb-Pb LHC data

● Geometry fluctuations also allow to 
understand the p-Pb (pp?) data

– Sub-nuclear scales become important

● Geometry engineering at RHIC with 
successful predictions on p-Au, d-Au and 
3He-Au 

a



40 What is the underlying physics?
● Hypothesis: 

The Physics underlying the observed collectivity is the same 

– sQGP: thermo and hydrodynamics (maybe “at the edge”) (→Piotr)

● Inconsistent with large v2 and 
without direct evidence of jet quenching?
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parton cascade needed huge cross sections

– Today, know that 1.5-3mb works for AMPT

On the other hand ...
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geometry fluctuations all the time!

● Many of us thought that developing vn via 
interactions (transport) is in principle the 
same as via pressure gradients (hydro)

– But neglects fake flow due to anisotropic 
escape probability (dominant even in AA?)
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● Hydro at RHIC established also because 

parton cascade needed huge cross sections

– Today, know that 1.5-3mb works for AMPT

● AMPT was used to substantiate postulation 
of triangularity. It had the right underlying 
geometry fluctuations all the time!

● Many of us thought that developing vn via 
interactions (transport) is in principle the 
same as via pressure gradients (hydro)

– But neglects fake flow due to anisotropic 
escape probability (dominant even in AA?)

● AMPT describes a lot of data but with 
questionable concepts

– String melting into quarks, parton formation 
and spatial coalescence 

– Check if / where current models need 
corrections

On the other hand ...

See Guo-Liang Ma, Mon
       Zi-Wei Lin, Wed 
       Jamie Nagle, Tue

arXiv:1502.05572

http://arxiv.org/abs/1502.05572
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47 What is the underlying physics?
● Hypothesis: 

The Physics underlying the observed collectivity is the same 

– sQGP: thermo and hydrodynamics (maybe “at the edge”) (→Piotr)

● Inconsistent with large v2 and 
without direct evidence of jet quenching?

– sMOG(*): non-equilibrium parton dynamics (maybe can drive the 
system from weak to strong collectivity?) (→Paul)

– CGC + “evolution model” (→Soeren)

● Why bother with small systems?

– Study “dynamics” instead of “equilibrium”

– Validate, refine (or invalidate?) “perfect fluid” paradigm 

– Test fundamental QCD due to relevance of sub-nucleonic dof.     

(*) J.Schukraft, Collectivity workshop, BNL 2015



48 Extra



49 Example for AMPT and superSonic



50 Final state effects ?

No sign of hadron suppression, but dynamic range of ZN 
estimator limited to about 2<dN/dη>

<Ncoll>≈7

<Ncoll>≈16

<Ncoll>≈1680

ALICE, PRL 110 (2013) 082302

http://arxiv.org/abs/arXiv:1210.4520


51

ALICE

Measurements in “small” systems
● Performed in bins of event activity

– Tracks at mid-rapidity or 
multiplicity / energy in forward region

● Also ZDC, but smaller dynamic range

– Results can be affected 
by the event selection

● Usually estimated by using selections 
in different kinematic ranges

● Unlike in Pb-Pb, in p-Pb (pp) high 
multiplicity is rare compared to MB

● Final system not small

– Events with ~130 tracks (2%) similar 
multiplicity as 15-20% Cu-Cu 200 GeV

– Transverse radius (Rside) similar for 
similar multiplicities across systems

p-Pb

Pb-Pb



52

Pb-Pb

ALICE, PLB 708 (2012) 249

Δη

Δφ

 CMS, JHEP 1009 (2010) 91

pp
(0.0005% of MB)

NS ridge structures in angular correlations

CMS, PLB 718 (2012) 795

p-Pb
(3.1% of MB)

ATLAS, PRL 110 (2013) 182302

p-Pb
(2% of MB)

ALICE, PLB 719 (2013) 29

p-Pb
(20% of MB)

arXiv:1509.04776

Near-side ridges 
(direct exp. evidence 
for long-range Δη 
correlations at Δφ≈0)

http://arxiv.org/abs/1109.2501
http://arxiv.org/abs/arXiv:1009.4122
http://arxiv.org/abs/arXiv:1210.5482
http://arxiv.org/abs/arXiv:1212.5198
http://arxiv.org/abs/arXiv:1212.2001
http://arxiv.org/abs/1509.04776


53

Pb-Pb

p-Pb

Continuous evolution from 
“small” to “large” system

Multiplicity dependence CMS, PLB 724 (2013) 213

v2

M

http://arxiv.org/abs/1305.0609
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Pb-Pb

p-Pb

Continuous evolution from 
“small” to “large” system

Multiplicity dependence CMS, PLB 724 (2013) 213

v2

Pb-Pb

p-Pb

v3

M

ALICE,  PRC 90 (2014) 054901

p-Pb
Pb-Pbv3

M

M

http://arxiv.org/abs/1305.0609
http://arxiv.org/abs/1406.2474


55 Factorization-breaking in p-Pb
CMS, arXiv:1503.01692

Slightly less broken than in Pb-Pb

r2

(GeV/c)

http://arxiv.org/abs/1503.01692


56 Decorrelation in η CMS, arXiv:1503.01692

Observe larger decorrelation in η for p-Pb

http://arxiv.org/abs/1503.01692


57 Extended pT and η range

Cumulant method now up to 6 GeV. 

Similar dependence in forward and
backward direction for low p

T

CMS-PAS-HIN-15-008



58 LHCb LHCb-CONF-2015-004
2<η

lab
<4.9

LHCb-CONF-2015-004

In same absolute activity bins find similar NS yield

https://cds.cern.ch/record/2037107?ln=en
https://cds.cern.ch/record/2037107?ln=en


59 Heavy-flavor electron ridge

At mid-rapidity, double ridge for electrons from HF decays observed



60 Four-particle cumulant

(from Zhenyu Chen)

CMS-FSQ-PAS-15-002



61 Factorization ATLAS, arXiv:1509.04776

http://arxiv.org/abs/1509.04776


62 Template fit ATLAS, arXiv:1509.04776

Assuming there is no flow in the peripheral bin:

Assuming there is flow of similar magnitude: 

http://arxiv.org/abs/1509.04776


63 Template parameters ATLAS, arXiv:1509.04776

http://arxiv.org/abs/1509.04776


64 PID dependence of v2 CMS-FSQ-PAS-15-002

No mass dependence of v2 from jet correlation at low multiplicity



65 Spectra at low pT in pp (7 TeV)

pT
flow

= pT+mβT
flow

γT
flow

Shuryak and Zhirov, PLB 89 (1979) 253

Larger common velocity in 
pp/pPb at similar Nch

Increase and move of 
maximum with increasing 
multiplicity (measured with 
V0M to avoid trivial bias at 
low mult.)

pp p-Pb Pb-Pb

https://inspirehep.net/record/148252


66 Λ/K0s enhancement in/out jets

The enhancement is not coming from jets

Λ over       ratio inclusive vs inside jets

Inside jets

Inclusive



67 Λ/K0s



68 Particle ratios vs multiplicity



69 Multiplicity dependence of the Φ meson



70 Statistical model fits

0-5% p-Pb 0-10% Pp-Pb



71 Spectra in p-Pb

pT
flow

= pT+mβT
flow

γT
flow

Shuryak and Zhirov, PLB 89 (1979) 253

ALICE, PLB 728 (2014) 25

CMS,   EPJC 74 (2014) 2847

https://inspirehep.net/record/148252
http://arxiv.org/abs/1307.6796
http://arxiv.org/abs/1307.3442


72 Selection bias (examples for 7 TeV) 

Nch

selection

V0A
selection



73 Nuclear modification factor

At intermediate pT 
(Cronin region):

● Indication of 
mass ordering

– No enhancement 
for pions and kaons

– Pronounced peak 
for protons

– Even stronger for 
cascades 

Particle species dependence points to relevance of final state effects 



74 QpPb using ZN hybrid method

arXiv:1412.6828

http://arxiv.org/abs/1412.6828


75 QpPb
arXiv:1412.6828

http://arxiv.org/abs/1412.6828


76 J/Ψ and Ψ(2S) suppression

● J/  µµ: Multiplicity dependent suppression in p-going direction, 
                 and no suppression in Pb-going direction

● Consistent with shadowing

●  (2S)  µµ: Multiplicity dependent suppression in both directions

● Needs additional effect (Final state?)

(2S)

low Nch high Nch

J/

Forward going 

(2S)

low Nch high Nch

J/

Backward going 



77 Average transverse momentum



78 Associated yields ALICE, arXiv:1406.5463

Associated yields after long range subtraction
approx. flat, except for low multiplicity classes

http://arxiv.org/abs/1406.5463


79 Interplay between soft / hard production 



80 Proton color fluctuations

(from D.Perepelitsa)

 



81 3d pion radii in p-Pb ALICE, PRC 91 (2015) 034906

http://arxiv.org/abs/1502.00559


82 1d radii using 3 pion QS correlations

ALICE, PLB 739 (2014) 139

At the same measured Nch, 1d radius in pp 
more similar to p-Pb, than p-Pb to Pb-Pb

http://arxiv.org/abs/1404.1194


83 Weak collectivity

Particles produced in e+e- exhibit weak collectivity? 



84 Data comparisons



85 Comparison CMS vs ALICE (1d radii)

Corresponds to
~50 tracks for |η|<1 

CMS: Corrected Nch in |η|<4.8 down to 0
ALICE: Corrected Nch in |η|<1.6 down to 0.16 GeV/c

Corresponds to
~50 tracks for |η|<1 

Qualitative similar result, but quantitatively different!

ALICE, PLB 739 (2014) 139

CMS, HIN-14-013

http://arxiv.org/abs/1404.1194
https://cds.cern.ch/record/1703272/files/HIN-14-013-pas.pdf


86 Comparison CMS and ALICE (3d radii)

CMS at Ntrack of 300,
should be compared to 
ALICE at dN/dη1/3 of ~4

3d Pb-Pb radii 
are consistent

ALICE, arXiv:1507.06842

CMS, HIN-14-013
(CMS radii are exp in 3d, 
so scale by √π)

http://arxiv.org/abs/1507.06842
https://cds.cern.ch/record/1703272/files/HIN-14-013-pas.pdf


87 Radii from ATLAS

ATLAS-CONF-2015-054

(Radii are exp in 3d, so 
scale by √π)

https://cds.cern.ch/record/2051487


88 Comparison to prel. CMS
-2.4 < trig < -2

: 0                2                 4

CMS-HIN-14-008

https://cds.cern.ch/record/1703271/files/HIN-14-008-pas.pdf


89 Comparison to prel. CMS
-2.4 < trig < -2

: 0                2                 4

CMS-HIN-14-008

V
2
=0.005

↓
v

2
=0.07

https://cds.cern.ch/record/1703271/files/HIN-14-008-pas.pdf


90 Comparison to prel. CMS
-2.4 < trig < -2

: 0                2                 4

2 < trig < 2.4

: -4               -2                 0

CMS-HIN-14-008

V
2
=0.005

↓
v

2
=0.07

https://cds.cern.ch/record/1703271/files/HIN-14-008-pas.pdf


91 Comparison to prel. CMS
-2.4 < trig < -2

: 0                2                 4

2 < trig < 2.4

: -4               -2                 0

CMS-HIN-14-008

V
2
=0.0035

↓
v

2
=0.06

V
2
=0.005

↓
v

2
=0.07

https://cds.cern.ch/record/1703271/files/HIN-14-008-pas.pdf


92 Comparison to prel. CMS
-2.4 < trig < -2

: 0                2                 4

2 < trig < 2.4

: -4               -2                 0

CMS-HIN-14-008

V
2
=0.0035

↓
v

2
=0.06

V
2
=0.005

↓
v

2
=0.07

● Resulting coefficients 

– of similar magnitude

– with same asymmetry

● Not apples-to-apples comparison

– Muons vs charged particles

– Kinematic ranges + event selection 

https://cds.cern.ch/record/1703271/files/HIN-14-008-pas.pdf


93 RpPb at high pT

As suspected, the enhancement is from (interpolated) pp reference 
(pp data at 5 TeV will soon be taken!)

CMS-HIN-15-004

https://cds.cern.ch/record/2030077/files/HIN-15-004-pas.pdf


94 Fragmentation function in p-Pb vs pp

Discrepancy with CMS, but both use interpolated pp references

CMS-HIN-15-004

ATLAS-CONF-2015-022

https://cds.cern.ch/record/2030077/files/HIN-15-004-pas.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-022
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