

Experimental overview on small colliding systems at LHC

(Special session on "QGP in small systems?")

Constantin Loizides (LBNL)

02 October 2015

2 Outline

Empirically, hot QGP $\equiv P_{QCD}$ AND pQCD AND NOT pA (cf.Gyulassy, arXiv:nucl-th/0403032)

- Key results related to bulk properties in pPb and pp at high N_{ch}
- Discussion

Only a selection of all available results shown, find them all here:

ALICE results: http://aliceinfo.cern.ch/ArtSubmission/publications

ATLAS results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

CMS results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

3 Observation of double ridge in p-Pb

- Suppress non-flow by subtracting per-trigger yields from low mult.
 - Checked that per-trigger yields in 60-100% are similar to pp
 - For large N_{ch}, can use η-gap method instead

4 Key features of double ridge

arXiv:1409.1792

- v_n coefficients
 - Significant v_N (n=2 to 5) with "familiar" ordering + shape in p_T
 - Substantial to even high p_T
- Multi-particle correlations
 - All particles correlated
 (v₂{4}≈v₂{6}≈v₂{8}≈v₂{LYZ})
- Particle species dependence
 - Crossing of v₂(p) with v₂(pi)
 at p_T about 2 GeV/c
 - Similar for $v_3(\Lambda)$ vs $v_3(K)$

Features qualitatively similar to those seen in Pb-Pb collisions. Suggests similar physics at place? (Note: no direct evidence of jet quenching)

Pseudo-rapidity dependence

Inclusive muon v₂ (*)

(*) Event-plane angle decorrelation $p_{_{\rm T}}$ (GeV/c) in η not taken into account

- Ridge extends to 2<η_{lab}<4.9
- Flat η-dependence
- Inclusive muon v₂ measured
 - Above 2 GeV/c sensitive to muons from HF decays

6 NS ridge in pp

The ridge yield does not significantly change with collision energy (Confirmation by two experiments!)

The double ridge in pp – before subtraction

CMS-FSQ-PAS-15-002

Two-particle long-range coefficients

The double ridge in pp – after subtraction

CMS-FSQ-PAS-15-002

Scale low multiplicity yield by ratio of NS jet yield in high over low (after subtracting the long range correlation in both)

(Method used in p-Pb by ALICE usually for systematics, see eg. arXiv:1212.2001)

Two-particle long-range coefficients

Scale low multiplicity yield by ratio of NS jet yield in high over low (after subtracting the long range correlation in both)

 $v_2(pp) \approx 4\%$ at high M

 $v_3(pp) \approx 1.2\%$ at high M

Double ridge in pp (at 13 TeV) ATLAS, arXiv:1509.04776

• Peripheral subtraction via template fit to determine F and $v_{2,2}$ $Y^{\mathrm{temp}}(\Delta\Phi) = F \, Y^{\mathrm{periph}} + Y^{\mathrm{ridge}}$

$$Y^{\text{temp}}(\Delta\Phi) = FY^{\text{periph}} + Y^{\text{ridge}}$$

 $Y^{\text{ridge}}(\Delta\Phi) = G(1 + v_{2,2}\cos(2\Delta\Phi))$

- Two particle coefficients found to factorize into single particle ones
- At low N_{ch} ambiguity whether to allow or not a $v_{2,2}$ component in peripheral
 - Role of different event types (diffraction) in low M events?
 - Needs more study: for now take it as method uncertainty on v₂ at low M

11 $v_2(p_T)$ in pp

- Multiplicity independence (unambiguous for M>~70)
- Collision energy independence
 - Also consistent with the CMS data at 7 TeV

PID dependence of v₂ in pp

Mass ordering and crossing (?) in low p_T region for high multiplicity

13 Particle ratios vs multiplicity

Steady release of canonical suppression with increasing M

(same for Λ , less so for Ω , and $\Phi \approx$ flat)

14 Summary (observables) Pb-Pb, p-Pb, pp (at high M)

- Low p_T spectra (radial flow): yes, yes↑, yes↑
- Particle ratios: GC level, except $\Omega \approx$ at high N_{ch} , similar trend
- Statistical model: GC (to 10-30%), γ_s≈1 (larger deviations), γ_s<1 (MB)
- Azimuthal anisotropy (v_n) : n=1-6, n=1-5, n=2,3
 - Higher order cumulants: $v_2\{4\}=...=v_2\{LYZ\}$, $v_2\{4\}=...=v_2\{LYZ\}$, subtr. only
 - Characteristic p_T shape: yes, yes, yes (subtr. only)
 - Characteristic multiplicity dep.: yes, yes, ?
 - Weak η dependence: yes, yes, -
- Mass dependence: v₂,v₃, v₂,v₃ (only substitution)
- Factorization breaking: yes, yes, ?
- v_n distributions: yes, -, -
- Event angle and v_N correlations: yes, -,
- HBT radii (k_T, R_{out}/R_{side}): yes,1, yes,≈1,
- Suppression (energy loss): yes, ?, -

- Weak collectivity <u>proven</u> in Pb-Pb and p-Pb, not known in pp
- Strong collectivity (thermo +hydro dynamics) <u>compatible</u> with most Pb-Pb and p-Pb
- Only limited amount of data in pp at high N_{ch} but <u>compatible</u> with SC
 - Not unreasonable to expect pp≈pPb at high N_{ch}!

15 What is the underlying physics?

- Hypothesis:
 The Physics underlying the strong collectivity is the same
 - sQGP: thermo and hydrodynamics (maybe "at the edge") (→ Piotr)

16 Taking a look back...

- Larger than expected Cu-Cu v₂ lead to postulation of importance of geometry fluctuations and participant eccentricity
- Geometry fluctuations successfully predicted flow fluctuations
- Resulted in prediction for triangular flow based on "analogy" arguments
- Triangular flow visible in Pb-Pb LHC data
- Geometry fluctuations also allow to understand the p-Pb (pp?) data
 - Sub-nuclear scales become important
- Geometry engineering at RHIC with successful predictions on p-Au, d-Au and ³He-Au

17 What is the underlying physics?

- Hypothesis:
 The Physics underlying the observed collectivity is the same
 - sQGP: thermo and hydrodynamics (maybe "at the edge") (→ Piotr)
 - Inconsistent with large v₂ and without direct evidence of jet quenching?

18 On the other hand ...

- Hydro at RHIC established also because parton cascade needed huge cross sections
 - Today, know that 1.5-3mb works for AMPT
- AMPT was used to substantiate postulation of triangularity. It had the right underlying geometry fluctuations all the time!
- Many of us thought that developing v_n via interactions (transport) is in principle the same as via pressure gradients (hydro)
 - But neglects fake flow due to anisotropic escape probability (dominant even in AA?)
- AMPT describes a lot of data but with questionable concepts
 - String melting into quarks, parton formation and spatial coalescence
 - Check if / where current models need corrections

See Guo-Liang Ma, Mon Zi-Wei Lin, Wed Jamie Nagle, Tue arXiv:1502.05572

19 What is the underlying physics?

- Hypothesis:
 - The Physics underlying the observed collectivity is the same
 - sQGP: thermo and hydrodynamics (maybe "at the edge") (→ Piotr)
 - Inconsistent with large v₂ and without direct evidence of jet quenching?
 - sMOG(*): non-equilibrium parton dynamics (maybe can drive the system from weak to strong collectivity?) (→ Paul)
 - CGC + "evolution model" (→ Soeren)
- Why bother with small systems?
 - Study "dynamics" instead of "equilibrium"
 - Validate, refine (or invalidate?) "perfect fluid" paradigm
 - Test fundamental QCD due to relevance of sub-nucleonic dof.

20 Extra

21 Example for AMPT and superSonic

22 Final state effects?

No sign of hadron suppression, but dynamic range of ZN estimator limited to about $2 < dN/d\eta >$

23 Measurements in "small" systems

- Performed in bins of event activity
 - Tracks at mid-rapidity or multiplicity / energy in forward region
 - Also ZDC, but smaller dynamic range
 - Results can be affected by the event selection
 - Usually estimated by using selections in different kinematic ranges
- Unlike in Pb-Pb, in p-Pb (pp) high multiplicity is rare compared to MB
- Final system not small
 - Events with ~130 tracks (2%) similar multiplicity as 15-20% Cu-Cu 200 GeV
 - Transverse radius (R_{side}) similar for similar multiplicities across systems

Continuous evolution from "small" to "large" system

ALICE, PRC 90 (2014) 054901

Factorization-breaking in p-Pb

CMS, arXiv:1503.01692

$$\begin{split} r_n &\equiv \frac{V_{n\Delta}(p_T^a, p_T^b)}{\sqrt{V_{n\Delta}(p_T^a, p_T^a)} \sqrt{V_{n\Delta}(p_T^b, p_T^b)}} \\ &\sim \left\langle \cos[n(\Psi_n(p_T^a) - \Psi_n(p_T^b))] \right\rangle \end{split}$$

Slightly less broken than in Pb-Pb

27 Decorrelation in η

$$r_n(\eta^a, \eta^b) \approx \mathrm{e}^{-2F_n^{\eta}\eta^a}$$

Observe larger decorrelation in η for p-Pb

$$\sqrt{r_n(\eta^a, \eta^b) \times r_n(-\eta^a, -\eta^b)} \approx \sqrt{\frac{\left\langle \cos\left[\Psi_n(-\eta^a) - \Psi_n(\eta^b)\right]\right\rangle}{\left\langle \cos\left[\Psi_n(\eta^a) - \Psi_n(\eta^b)\right]\right\rangle}} \frac{\left\langle \cos\left[\Psi_n(\eta^a) - \Psi_n(-\eta^b)\right]\right\rangle}{\left\langle \cos\left[\Psi_n(-\eta^a) - \Psi_n(-\eta^b)\right]\right\rangle}$$

Cumulant method now up to 6 GeV.

Similar dependence in forward and backward direction for low $p_{\scriptscriptstyle T}$

In same absolute activity bins find similar NS yield

30 Heavy-flavor electron ridge

At mid-rapidity, double ridge for electrons from HF decays observed

Four-particle cumulant

Q-cumulant 4-particle correlation

$$\langle\langle 4 \rangle\rangle \equiv \left\langle \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle \right\rangle$$
 $c_n\{4\} = \left\langle\langle 4 \rangle\right\rangle - 2 \cdot \left\langle\langle 2 \rangle\right\rangle^2$
related to \mathbf{v}_2 as
 $v_2\{4\}^4 = -c_2\{4\}$

- c_{2} {4} decrease with multiplicity, same behavior as in pPb
- Indication of negative $c_2\{4\}$ at high multiplicity, stay tuned!

Factorization

Template fit

$$Y^{\text{temp}}(\Delta\Phi) = F Y^{\text{periph}} + Y^{\text{ridge}}$$

 $Y^{\text{ridge}}(\Delta\Phi) = G(1 + v_{2,2}\cos(2\Delta\Phi))$

$$FY^{\text{periph}}(\Delta\Phi) = FY^{\text{hard}}(\Delta\Phi) + FG_0\left(1 + 2v_{2,2}^0\cos(2\Delta\Phi)\right)$$

Assuming there is no flow in the peripheral bin: $v_{2,2}^0 = 0$ $Y^{\text{temp}}(\Delta\Phi) = FY^{\text{hard}}(\Delta\Phi) + (FG_0 + G)(1 + 2v_{2,2} \frac{G}{FG_0 + G}\cos(2\Delta\Phi))$

Assuming there is flow of similar magnitude: $v_{2,2}^0 \approx v_{2,2}$ $Y^{\text{temp}}(\Delta\Phi) = FY^{\text{hard}}(\Delta\Phi) + (FG_0 + G)(1 + \frac{2v_{2,2}}{2}\cos(2\Delta\Phi))$

Template parameters

$$Y^{\text{temp}}(\Delta\Phi) = F Y^{\text{periph}} + Y^{\text{ridge}}$$

 $Y^{\text{ridge}}(\Delta\Phi) = G(1 + v_{2,2}\cos(2\Delta\Phi))$

PID dependence of v₂

No mass dependence of v_2 from jet correlation at low multiplicity

Spectra at low p_T in pp (7 TeV)

Increase and move of maximum with increasing multiplicity (measured with VOM to avoid trivial bias at low mult.)

Larger common velocity in pp/pPb at similar N_{ch}

37 \text{\chi}K0s enhancement in/out jets

The enhancement is not coming from jets

38 //K0s

39 Particle ratios vs multiplicity

40 Multiplicity dependence of the Ф meson

41 Statistical model fits

42 Spectra in p-Pb

EPJC 74 (2014) 2847 CMS,

Shuryak and Zhirov, PLB 89 (1979) 253

ALICE, p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Blast-Wave

43 Selection bias (examples for 7 TeV)

44 Nuclear modification factor

At intermediate p_T (Cronin region):

- Indication of mass ordering
 - No enhancement for pions and kaons
 - Pronounced peak for protons
 - Even stronger for cascades

Particle species dependence points to relevance of final state effects

45 QpPb using ZN hybrid method

arXiv:1412.6828

47 J/Ψ and Ψ (2S) suppression

- J/ ψ \rightarrow µµ: Multiplicity dependent suppression in p-going direction, and no suppression in Pb-going direction
 - Consistent with shadowing
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
 - Needs additional effect (Final state?)

48 Average transverse momentum

9 Associated yields

Associated yields after long range subtraction approx. flat, except for low multiplicity classes

50 Interplay between soft / hard production

51 Proton color fluctuations

1d radii using 3 pion QS correlations

At the same measured Nch, 1d radius in pp more similar to p-Pb, than p-Pb to Pb-Pb

54 Weak collectivity

Particles produced in e+e- exhibit weak collectivity?

55 Data comparisons

56 Comparison CMS vs ALICE (1d radii)

Qualitative similar result, but quantitatively different!

CMS: Corrected Nch in $|\eta|$ <4.8 down to 0

ALICE: Corrected Nch in |η|<1.6 down to 0.16 GeV/c

57 Comparison CMS and ALICE (3d radii)

CMS at Ntrack of 300, should be compared to ALICE at $dN/d\eta^{1/3}$ of ~4

3d Pb-Pb radii are consistent (CMS radii are exp in 3d, so scale by $\sqrt{\pi}$)

58 Radii from ATLAS

ATLAS-CONF-2015-054

k_T [GeV]

(Radii are exp in 3d, so scale by $\sqrt{\pi}$)

59 Comparison to prel. CMS

- Resulting coefficients
 - of similar magnitude
 - with same asymmetry
- Not apples-to-apples comparison
 - Muons vs charged particles
 - Kinematic ranges + event selection

R_{pPb} at high p_T

As suspected, the enhancement is from (interpolated) pp reference (pp data at 5 TeV will soon be taken!)

61 Fragmentation function in p-Pb vs pp

Discrepancy with CMS, but both use interpolated pp references