Motivation

- photons produced in all stages of the heavy ion collisions → probe the initial state
- "photon puzzle" → find new sources of photons
- goal: saturation physics from photons
- CGC phase → gluon dominated
 → photons from virtual quarks!
- small coupling compensated by $A^\mu \sim 1/g$ color fields
 → loops as important as trees!

Amplitude

- 0th order in ρ_p: A^μ pure gauge → $\langle p, \lambda | \Omega_{\text{in}} \rangle = 0$
- 1st order in ρ_p: A^μ develops transverse components

 $\langle p, \lambda | \Omega_{\text{in}} \rangle = e_i g_F (p, \lambda) \int d^4 x \int d^4 y e_i F_{\mu\nu}(\alpha) \Omega_{\text{in}}(\alpha) \Omega_{\text{in}}^\dagger(\alpha') \Omega_{\text{in}}(\alpha) A^\mu(x) = e_i g_F (p, \lambda) \int d^4 x \int d^4 y e_i F_{\mu\nu}(\alpha)(p) \Omega_{\text{in}}(\alpha) \Omega_{\text{in}}^\dagger(\alpha') \Omega_{\text{in}}(\alpha) A^\mu(x) \bigg|_{p = 0}$

Photon multiplicity

$$dN = \frac{1}{16 \pi (2\pi)^3} \sum_{\lambda} \left| \langle p, \lambda | \Omega_{\text{in}} \rangle \right|^2$$

- color average → Mclerran-Venugopalan model
- proton
 $$\langle \rho_p | (k_{1\perp}^+ | \rho_p^b (k_{2\perp}^+) \rangle = (2\pi)^4 \delta^{ab} g^b g^a \rho_p^2 (k_{1\perp} - k_{2\perp})$$
- nucleus
 $$\langle \rho_n^a | (k_{1\perp}^+ | \rho_n^b (k_{2\perp}^+) \rangle = (2\pi)^4 \delta^{ab} g^b g^a \rho_n^2 (k_{1\perp} - k_{2\perp})$$

- Q^2_s: saturation scale

Summary

- analytic expression for photon multiplicity in pA within CGC
- leading order → bremsstrahlung, but at high energy gluon content of the proton dominates
 → photon production through quark loop in that limit should resemble more the AA case
- numerical evaluation underway