The topological structures in strongly coupled QGP with chiral fermions on the lattice

Sayantan Sharma

September 28, 2015

In collaboration with:

V. Dick, F. Karsch, E. Laermann, S. Mukherjee.

Slide 1 of 26

1 The $U_A(1)$ puzzle in QCD: a way to resolve it

2 Our results

- 3 Topological structures and $U_A(1)$
- Implications for experiments

- ∢ ⊒ →

A (1) > (1)

1 The $U_A(1)$ puzzle in QCD: a way to resolve it

2 Our results

3 Topological structures and $U_A(1)$

Implications for experiments

- 4 同 6 - 4 三 6 - 4 三 6

• Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 83].

- In model QFT with same symmetries as QCD, it is not possible to quantify the $U_A(1)$ effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry + reproduce exactly anomaly on the lattice.

(4回) (日) (日)

• Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 83].

- In model QFT with same symmetries as QCD, it is not possible to quantify the $U_A(1)$ effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry + reproduce exactly anomaly on the lattice.

• Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 83].

- In model QFT with same symmetries as QCD, it is not possible to quantify the $U_A(1)$ effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry + reproduce exactly anomaly on the lattice.

Why is it important?

- $m_{u,d} << \Lambda_{QCD}$, chiral symmetry drives phase transition at $\mu_B \to 0$
- The singular part of free energy should show critical scaling \rightarrow hints of criticality from lattice studies [BI-BNL collaboration, 09].

Why is it important?

• Criticality at $\mu = 0$ changes on whether $U_A(1)$ is effectively restored

[Pelissetto & Vicari, 13, Nakayama & Ohtsuki, 14].

- O(4) critical exponents for $U_A(1)$ broken
- $U(2) \times U(2)$ if $U_A(1)$ effectively restored
- Effects should be visible in higher order fluctuations measured in the experiments [Karsch & Redlich, 11]

- Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B ?
- Lattice QCD can answer such questions from first principles + confirmation from Heavy-Ion experiments

- Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B ?
- Lattice QCD can answer such questions from first principles + confirmation from Heavy-Ion experiments

b) (4) (2) (5)

- Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B?
- Lattice QCD can answer such questions from first principles + confirmation from Heavy-Ion experiments

- 4 回 5 - 4 戸 5 - 4 戸 5

- Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B?
- Lattice QCD can answer such questions from first principles + confirmation from Heavy-Ion experiments

- ∢ ≣ ▶

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + explicitly broken U_A(1)
 (5) Chardraskharae, 96, H. Ohno et al. 12, V. Dirk et al. 15)
- Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + explicitly broken U_A(1)

[S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

- Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

- 4 回 5 - 4 戸 5 - 4 戸 5

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + explicitly broken U_A(1)

 $[\mathsf{S},$ Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

- Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

A (1) > A (2) > A (2) > A

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + explicitly broken $U_A(1)$

[S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

- Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

・ 同 ト ・ ヨ ト ・ ヨ ト

Chiral fermions on the lattice

- A no-go theorem on the lattice disfavours ultra-local chiral fermion operator [Nielsen & Ninomiya, 82]
- Overlap fermions [Narayanan & Neuberger, 94, Neuberger, 98] sacrifice ultra-locality

 $D_{ov} = M(1 + \gamma_5 \operatorname{sgn}(\gamma_5 D_W(-M)))$, $\operatorname{sgn}(A) = A/\sqrt{A}A$.

 But have an exact chiral symmetry under non-local chiral transformations + index theorem at finite "a" [Ginsparg & Wilson, 82, Luscher, 98].

 $\{\gamma_5, D\} = aD\gamma_5 D$

Chiral fermions on the lattice

• One can also start from 5D world+ put a defect to localize chiral fermions on the 4D brane.

• Domain wall fermions [Kaplan 92, Shamir 95] in the limit $N_5 \rightarrow \infty$ $D_{DW} = M(1 - \gamma_5 \operatorname{sgn}(\ln |T|))$, $T = (1 + a_5\gamma_5 D_W P_+)^{-1}(1 - a_5\gamma_5 D_W P_-)$.

Observables sensitive to $U_A(1)$ breaking..

- Not an exact symmetry \rightarrow no order-parameter
- Look at the difference of the integrated 2 point correlators [Shuryak, 94]

$$\chi_{\pi} - \chi_{\delta} = \int d^4x \left[\langle i\pi^+(x)i\pi^-(0) \rangle - \langle \delta^+(x)\delta^-(0) \rangle \right]$$

• Equivalently study $ho(\lambda, m_f)$ of the Dirac operator [Cohen, 95, Hatsuda & Lee, 95]

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \ \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}} \ , \ \langle \bar{\psi}\psi \rangle \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{2m_{f} \ \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

- Chiral symmetry restored: $\lim_{m_f \to 0} \lim_{V \to \infty} \rho(0, m_f) \to 0 \Rightarrow U_A(1)$ restored.
- Chiral symmetry restored $+U_A(1)$ broken if

$$\lim_{\lambda\to 0}\rho(\lambda,m_f)\to \delta(\lambda)m_f^{\alpha} \ , 1<\alpha<2.$$

イロト 不得 とくほと くほとう ほ

Spectral density of Dirac operator at finite T

• Very little known. Only recently there are very interesting results [Aoki, Fukaya & Taniguchi, 12].

Assuming ρ(λ, m) to be analytic in m², λ, look at chiral Ward identities of n-point function of scalar & pseudo-scalar currents.

- ρ(λ, m → 0) ~ λ³ ⇒ U_A(1) breaking effects invisible in these sectors for upto 6-point functions.
- Look for non-analyticities + analytic rise in the infrared QCD Dirac spectrum

イロト 不得 とくほと くほとう ほ

Spectral density of Dirac operator at finite T

• Very little known. Only recently there are very interesting results [Aoki, Fukaya & Taniguchi, 12].

Assuming ρ(λ, m) to be analytic in m², λ, look at chiral Ward identities of n-point function of scalar & pseudo-scalar currents.

- ρ(λ, m → 0) ~ λ³ ⇒ U_A(1) breaking effects invisible in these sectors for upto 6-point functions.
- Look for non-analyticities + analytic rise in the infrared QCD Dirac spectrum

イロト 不得 とくほと くほとう ほ

1) The $U_A(1)$ puzzle in QCD: a way to resolve it

2 Our results

3 Topological structures and $U_A(1)$

Implications for experiments

- 4 同 6 - 4 三 6 - 4 三 6

Numerical details

- Möbius domain wall fermions on 5D hypercube with N = 32 sites along each spatial 4-dim, $N_5 = 16$ and $N_{\tau} = 8$ sites along temporal dim.
- Volumes, $V = N^3 a^3$, Temperature, $T = \frac{1}{N_{\tau}a}$, a is the lattice spacing.
- Box size: $m_{\pi} V^{1/3} > 4$
- 2 light+1 heavy flavour
- Input m_s physical ≈ 100 MeV and $m_s/m_l = 27, 12$ $\Rightarrow m_{\pi} = 135, 200$ MeV. [Columbia-BNL-LLNL, 13,14].
- The sign function and chiral symmetry maintained as precise as 10^{-10} .

QCD Dirac spectrum at finite T

- General features: Near zero mode peak +bulk.
- No gap observed upto 1.2 T_c for physical quark mass [V. Dick et. al. in prep].

General Characteristics

- We fit to the ansatz: $\rho(\lambda) = \frac{A\epsilon}{\lambda^2 + A} + B\lambda^{\gamma}$.
- Bulk rises linearly as λ near T_c .
- No gap even when quark mass reduced!

General Characteristics

- The rise of the bulk is $\gamma \sim 2 \rightarrow$ Still not consistent with λ^3 .
- Infrared modes becomes rarer with a small peak.

A closer look at the near-zero modes

- The near-zero modes sensitive to the sea quark mass \rightarrow sparse when m_{π} heavier but the peak survives!
- Falls by more than a third at $1.2T_c$.

Comparing eigenspectra for different lattice fermions

- The bulk spectra of staggered quarks(HISQ) consistent with DW spectrum with heavier quark mass at $1.2T_c$.
- More near-zero states in HISQ than domain wall. broken anomalous $U_A(1)$?
- Bulk spectrum insensitive to lattice discretization.

Fate of $U_A(1)$ near T_c

- Contribution to $U_A(1)$ breaking in 2-point correlation functions mainly come from small eigenvalues.
- First 50 eigenvalues produce most of the breaking obtained from inversion of DW Dirac operator [Columbia-BNL-LLNL, 13,14].

1) The $U_A(1)$ puzzle in QCD: a way to resolve it

2 Our results

3 Topological structures and $U_A(1)$

Implications for experiments

- 4 回 ト - 4 回 ト

What are the constituents of the hot QCD medium?

- At T = 0, anomaly effects related to instantons [t'Hooft, 76].
- Near chiral crossover transition T_c , a medium consisting of interacting instantons can explain chiral symmetry breaking \Rightarrow Instanton Liquid Model [Shuryak, 82].
- At $T >> T_c$, medium is like a dilute gas of instantons [Gross, Pisarski & Yaffe, 81].
- What is the medium made up of for $T_c \leq T \leq 2T_c$?

イロト イポト イラト イラト

A closer look at near-zero modes

- Near-zero modes due to a dilute instanton gas?
- Small residual interactions at $1.2T_c$.
- The dilute gas picture sets in QCD already at $1.5 T_c$ [V. Dick et. al., 15].

- Have strong sensitivity to sea-quark mass.
- Naive fit produces a T^{-2.5} fall unlike DIGM which predicts T⁻⁷ for QCD
 At high T, topological objects with -ve E,M charges get excited [Shuryak & Sulejmanpasic 12].
- At finite T, $n_{\rm instanton} \sim T^{-7}$ and $n_{\rm dyons} \sim T^{-2.3}$

Sayantan Sharma

- Have strong sensitivity to sea-quark mass.
- Naive fit produces a $T^{-2.5}$ fall unlike DIGM which predicts T^{-7} for QCD.
- At high *T*, topological objects with -ve E,M charges get excited [Shuryak & Sulejmanpasic 12].
- At finite T, $n_{\rm instanton} \sim T^{-7}$ and $n_{\rm dyons} \sim T^{-2.3}$

- Have strong sensitivity to sea-quark mass.
- Naive fit produces a $T^{-2.5}$ fall unlike DIGM which predicts T^{-7} for QCD.
- At high *T*, topological objects with -ve E,M charges get excited [Shuryak & Sulejmanpasic 12].
- At finite T, $n_{\rm instanton} \sim T^{-7}$ and $n_{\rm dyons} \sim T^{-2.3}$.

Sayantan Sharma

- Have strong sensitivity to sea-quark mass.
- Naive fit produces a $T^{-2.5}$ fall unlike DIGM which predicts T^{-7} for QCD.
- At high *T*, topological objects with -ve E,M charges get excited [Shuryak & Sulejmanpasic 12].
- At finite T, $n_{\rm instanton} \sim T^{-7}$ and $n_{\rm dyons} \sim T^{-2.3}$.

Sayantan Sharma

• A better observable:

$$rac{< Q^4 > -3 < Q^2 >^2}{< Q^2 >}$$

- At T = 0 QCD consistent with large N_c expansion of χ_t [M. Ce et. al, 15].
- Departure from large N_c expectations but a slow rise towards DIG $\gtrsim T_c \rightarrow$ effects of residual interactions or fractional topological charges?

[See R. Larsen's talk].

1) The $U_A(1)$ puzzle in QCD: a way to resolve it

2 Our results

3 Topological structures and $U_A(1)$

Implications for experiments

- 4 回 ト - 4 回 ト

Applications for anomalous hydrodynamics

• Hints of charge separation due to anomaly observed from hydrodynamic simulations. [Y. Hirono et. al, 13, 14, X. Liao & Y. Yin, 15].

- The Equation of State at freezeout is a crucial input.
- Eos at finite μ_5 used $\Rightarrow j_5$ is not conserved current.
- Instead quantify effects of local CP odd fluctuations by χ_t known from LQCD

$$F(\theta) = F(0) + \frac{\theta^2}{2} \frac{\partial^2 F}{\partial \theta^2}|_{\theta \to 0} + ..$$

• On large volume lattice we found that $U_A(1)$ broken for $T \leq 1.2T_c$.

- Infrared eigenvalues contribute dominantly to its breaking.
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.
- Near-zero modes require a careful study.

- On large volume lattice we found that $U_A(1)$ broken for $T \leq 1.2T_c$.
- Infrared eigenvalues contribute dominantly to its breaking.
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.
- Near-zero modes require a careful study.

- On large volume lattice we found that $U_A(1)$ broken for $T \leq 1.2T_c$.
- Infrared eigenvalues contribute dominantly to its breaking.
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.

Near-zero modes require a careful study.

- On large volume lattice we found that $U_A(1)$ broken for $T \leq 1.2T_c$.
- Infrared eigenvalues contribute dominantly to its breaking.
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.
- Near-zero modes require a careful study.

- The medium made of weakly interacting topological structures.
- T-dependence of χ_t suggest small residual interactions between them.
- Hints of structures with magnetic charges? \rightarrow preliminary, needs careful study for further conclusions.
- Consequences for phenomenology of strongly coupled QGP?
 [J. Xu, J. Liao & M. Gyulassy, 15].

- 4 同 2 4 日 2 4 日 2

- The medium made of weakly interacting topological structures.
- *T*-dependence of χ_t suggest small residual interactions between them.
- Hints of structures with magnetic charges? → preliminary, needs careful study for further conclusions.
- Consequences for phenomenology of strongly coupled QGP? [J. Xu, J. Liao & M. Gyulassy, 15].

- 4 同 2 4 日 2 4 日 2

- The medium made of weakly interacting topological structures.
- T-dependence of χ_t suggest small residual interactions between them.
- Hints of structures with magnetic charges? → preliminary, needs careful study for further conclusions.
- Consequences for phenomenology of strongly coupled QGP? [J. Xu, J. Liao & M. Gyulassy, 15].

- 4 同 2 4 日 2 4 日 2

- The medium made of weakly interacting topological structures.
- *T*-dependence of χ_t suggest small residual interactions between them.
- Hints of structures with magnetic charges? → preliminary, needs careful study for further conclusions.
- Consequences for phenomenology of strongly coupled QGP?

[J. Xu, J. Liao & M. Gyulassy, 15].

< 17 >