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The UA(1) puzzle

Origin:
Anomalous UA(1) not an exact symmetry of QCD yet may affect the
order of phase transition for Nf = 2 [Pisarski & Wilczek, 83].

In model QFT with same symmetries as QCD, it is not possible to
quantify the UA(1) effects in observables.

Need lattice studies with fermions having exact chiral/flavour
symmetry + reproduce exactly anomaly on the lattice.
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Why is it important?

mu,d << ΛQCD , chiral symmetry drives phase transition at µB → 0

The singular part of free energy should show critical scaling → hints of
criticality from lattice studies [BI-BNL collaboration, 09].
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Why is it important?

Criticality at µ = 0 changes on whether UA(1) is effectively restored
[Pelissetto & Vicari, 13, Nakayama & Ohtsuki, 14].

• O(4) critical exponents for UA(1) broken
• U(2)× U(2) if UA(1) effectively restored

Effects should be visible in higher order fluctuations measured in the
experiments [Karsch & Redlich, 11]
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Why is it important?

Could affect the EoS relevant for anomalous hydrodynamics with
chiral imbalance?

Softening of η′ mass near freezeout? [Grahl & Rischke, 14,15]

Consequences for the critical end-point at finite µB?

Lattice QCD can answer such questions from first principles +
confirmation from Heavy-Ion experiments
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The major issues with the lattice studies so far

Finite volume effects → ensure presence of topological objects in a
box.

Most studies done with lattice fermions with only a remnant of
continuum chiral symmetry + explicitly broken UA(1)
[S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

Studies done with chiral fermions are in a fixed topological sector+
small volume [JLQCD collaboration, 13].

Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]
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Chiral fermions on the lattice

A no-go theorem on the lattice disfavours ultra-local chiral fermion
operator [Nielsen & Ninomiya, 82]

Overlap fermions [Narayanan & Neuberger, 94, Neuberger, 98] sacrifice ultra-locality

Dov = M(1 + γ5 sgn(γ5DW (−M))) , sgn(A) = A/
√
A.A.

But have an exact chiral symmetry under non-local chiral
transformations + index theorem at finite “a” [Ginsparg & Wilson, 82, Luscher, 98].

{γ5,D} = aDγ5D
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Chiral fermions on the lattice

Our 4D world
Other end 5D torus

Domain wall

0
N55D

One can also start from 5D world+ put a defect to localize chiral fermions
on the 4D brane.

Domain wall fermions [Kaplan 92, Shamir 95] in the limit N5 → ∞
DDW = M(1− γ5 sgn(ln |T |)) , T = (1 + a5γ5DWP+)

−1(1− a5γ5DWP−).
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Observables sensitive to UA(1) breaking..

Not an exact symmetry→ no order-parameter

Look at the difference of the integrated 2 point correlators [Shuryak, 94]

χπ − χδ =

∫

d4x
[

〈iπ+(x)iπ−(0)〉 − 〈δ+(x)δ−(0)〉
]

Equivalently study ρ(λ,mf ) of the Dirac operator [Cohen, 95, Hatsuda & Lee, 95]

χπ − χδ
V→∞→

∫

∞

0

dλ
4m2

f ρ(λ,mf )

(λ2 +m2
f
)2

, 〈ψ̄ψ〉 V→∞→
∫

∞

0

dλ
2mf ρ(λ,mf )

(λ2 +m2
f
)

Chiral symmetry restored: limmf →0 limV→∞ ρ(0,mf ) → 0 ⇒ UA(1) restored.

Chiral symmetry restored +UA(1) broken if

lim
λ→0

ρ(λ,mf ) → δ(λ)mα
f , 1 < α < 2.
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Spectral density of Dirac operator at finite T

Very little known. Only recently there are very interesting results
[Aoki, Fukaya & Taniguchi, 12].

Assuming ρ(λ,m) to be analytic in m2, λ, look at chiral Ward
identities of n-point function of scalar & pseudo-scalar currents.

ρ(λ,m → 0) ∼ λ3 ⇒ UA(1) breaking effects invisible in these sectors
for upto 6-point functions.

Look for non-analyticities + analytic rise in the infrared QCD Dirac
spectrum
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Numerical details

Möbius domain wall fermions on 5D hypercube with N = 32 sites
along each spatial 4-dim, N5 = 16 and Nτ = 8 sites along temporal
dim.

Volumes,V = N3a3 , Temperature, T = 1
Nτa

, a is the lattice spacing.

Box size: mπ V 1/3 > 4

2 light+1 heavy flavour

Input ms physical ≈ 100 MeV and ms/ml = 27, 12
⇒ mπ = 135, 200 MeV. [Columbia-BNL-LLNL, 13,14].

The sign function and chiral symmetry maintained as precise as 10−10.
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QCD Dirac spectrum at finite T

General features: Near zero mode peak +bulk.

No gap observed upto 1.2 Tc for physical quark mass [ V. Dick et. al. in prep].
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General Characteristics

We fit to the ansatz: ρ(λ) = Aǫ
λ2+A

+ Bλγ.

Bulk rises linearly as λ near Tc .

No gap even when quark mass reduced!
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General Characteristics

The rise of the bulk is γ ∼ 2 → Still not consistent with λ3.

Infrared modes becomes rarer with a small peak.
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A closer look at the near-zero modes

The near-zero modes sensitive to the sea quark mass → sparse when
mπ heavier but the peak survives!

Falls by more than a third at 1.2Tc .
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Comparing eigenspectra for different lattice fermions

The bulk spectra of staggered quarks(HISQ) consistent with DW spectrum
with heavier quark mass at 1.2Tc .

More near-zero states in HISQ than domain wall..broken anomalous UA(1)?

Bulk spectrum insensitive to lattice discretization.
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Fate of UA(1) near Tc

Contribution to UA(1) breaking in 2-point correlation functions
mainly come from small eigenvalues.

First 50 eigenvalues produce most of the breaking obtained from
inversion of DW Dirac operator [Columbia-BNL-LLNL, 13,14].
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What are the constituents of the hot QCD medium?

At T = 0, anomaly effects related to instantons [ t’Hooft, 76].

Near chiral crossover transition Tc , a medium consisting of
interacting instantons can explain chiral symmetry breaking ⇒
Instanton Liquid Model [Shuryak, 82].

At T >> Tc , medium is like a dilute gas of instantons
[Gross, Pisarski & Yaffe, 81].

What is the medium made up of for Tc ≤ T ≤ 2Tc?
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A closer look at near-zero modes
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Near-zero modes due to a dilute instanton gas?

Small residual interactions at 1.2Tc .

The dilute gas picture sets in QCD already at 1.5Tc [V. Dick et. al., 15].
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Topological susceptibility above Tc

Have strong sensitivity to sea-quark mass.

Naive fit produces a T−2.5 fall unlike DIGM which predicts T−7 for QCD.

At high T , topological objects with -ve E,M charges get excited
[Shuryak & Sulejmanpasic 12].

At finite T , ninstanton ∼ T−7 and ndyons ∼ T−2.3.
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Topological susceptibility above Tc

A better observable:
< Q4 > −3 < Q2 >2

< Q2 >

At T = 0 QCD consistent with large Nc expansion of χt [M. Ce et. al, 15].
Departure from large Nc expectations but a slow rise towards DIG & Tc →
effects of residual interactions or fractional topological charges?
[See R. Larsen’s talk].
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Applications for anomalous hydrodynamics

Hints of charge separation due to anomaly observed from hydrodynamic
simulations. [Y. Hirono et. al, 13, 14, X. Liao & Y. Yin, 15].
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Summary

On large volume lattice we found that UA(1) broken for T ≤ 1.2Tc .

Infrared eigenvalues contribute dominantly to its breaking.

Consists of near-zero+tail of the bulk modes. The latter quite robust
insensitive to lattice cut-off effects.

Near-zero modes require a careful study.
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QCD medium at T & Tc : Summary

The medium made of weakly interacting topological structures.

T -dependence of χt suggest small residual interactions between them.

Hints of structures with magnetic charges? → preliminary, needs
careful study for further conclusions.

Consequences for phenomenology of strongly coupled QGP?
[J. Xu, J. Liao & M. Gyulassy, 15].
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Consequences for phenomenology of strongly coupled QGP?
[J. Xu, J. Liao & M. Gyulassy, 15].
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