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Introduction

In heavy ion collisions, we create
and study the properties of hot QCD matters.

What do we need to improve our understanding?
A realistic event generator

Model Overview

Full event generator : includes fluctuations in every stage

Model – IP-Glasma Initial Conditions

nucleon + partonic fluctuations

In the IP-Glasma picture [1], partons with high
x provide color sources for classical Yang-Mills
fields. The color gauge field in terms of the
path-orderd Wilson line is given by

Ai(x⊥) =
i

g
V (x⊥)∂iV

†(x⊥) (1)

V (x⊥) = P exp

[
−ig

∫
dx− ρ(x−, x⊥)

∇2
T −m2

]
(2)

The fluctuation of color charges carried by high-x partons in nuclei are described as

⟨ρa(x−, x⊥)ρ
b(y−, y⊥)⟩ = g2µ2

A(x⊥)δ
abδ(x− − y−) δ(2)(x⊥ − y⊥) (3)

where g2µ depends on the transverse position inside the nucleus. These fluctuations
are not present in the MC-Glauber model.

Model – MUSIC Hydro

Second-order viscous hydrodynamics

MUSIC [2] solves 3 + 1D hydrodynamic conservation equations ∂µT
µν(t, x) = 0,

along with the equations for the dissipative currents

τΠΠ̇ + Π = −ζ θ − δΠΠΠ θ + λΠππ
µνσµν (4)

τππ̇
⟨µν⟩ + πµν = 2η σµν − δπππ

µνθ + φ7π
⟨µ
α πν⟩α

−τπππ
⟨µ
α σν⟩α + λπΠΠσµν . (5)

The transport coefficients are determined using the relaxation time and 14-moment
approximation [3].

Model – Cooper-Frye Sampling

switching from hydro to particles

Hadrons are sampled on the freeze-out hypersurface Σ according to the Cooper-Frye
formula [4].

dN

d3p

∣∣∣∣
1-cell

=


d

(2π)3
[f0(x,p) + δfshear(x,p) + δfbulk(x,p)]

pµ∆Σµ

Ep

if f0 + δfshear + δfbulk > 0 and pµ∆Σµ > 0

0 otherwise

(6)

where f0 is the local equilibrium distribution function and the bulk [5] and shear [6]
viscous corrections are given by

δfshear = f0(1± f0)
πµνp

µpν

2 (ϵ0 + P0)T 2
(7)

δfbulk = −f0(1± f0)
Cbulk

T

[
m2

3 (p · u) −
(
1

3
− c2s

)
(p · u)

]
Π (8)

We assume a grand canonical ensemble where particles on each fluid cell are sampled
independently.

Model – UrQMD Cascade

Transport model for dilute hadronic matter

UrQMD (Ultra-relativistic Quantum Molecular Dynamics) [7] is a transport model
dealing with the Boltzmann’s transport equation

pµ
∂fi
∂xµ

(t, x,p) = Ci[f ] (9)

by performing scattering and decay in an N -body system. UrQMD includes 55
baryon species and 32 meson species with masses up to 2.25GeV.
The cross sections and decay rates that enter UrQMD are based on the experimental
data.

Results – shear-only case
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The integrated vn’s favor η/s = 0.16.
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The mean pT is largely overestimated.

A physical mechanism that reduces the transverse expansion rate of the system is
required.

Results – shear+bulk case
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The integrated vn’s favor η/s = 0.095.

The estimated of the shear viscosity is significantly altered by inclusion of the bulk
viscosity.
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The mean pT is well reproduced.

The bulk viscosity slows down the expansion by reducing the pressure and its gra-
dient.
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The pT spectra and v2(pT ) are well described.

Hadronic afterburner is important in describing protons due to different cross sec-
tions and kinetic freeze-out.

Results – shear+bulk case (continued)
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Strange baryons are also reasonably described.
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The hadronic re-scattering reduces the fluctuation of vn.
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The EP correlations increase due to the shear viscosity.

Results – extension to higher pT with MARTINI
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MARTINI jet is necessary to describe the intermediate and high pT
spectrum.

Conclusion

Our hybrid model is successful in reasonably describing

the identified hadrons pT spectra, anisotropic flow coefficients vn
and correlations among vn and Ψn.

observed in heavy ion collisions at the LHC.
Our work indicates that heavy ion simulations with IP-Glasma initial condi-
tions require

a finite bulk viscosity and hadronic afterburner

to fit the data.
MARTINI jet is important in getting the higher pT spectra.
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