

D_s^{\pm} meson production in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{GeV} \text{ in STAR}$

Long Zhou for the STAR Collaboration

University of Science and Technology of China

Brookhaven National Lab

Abstract

Heavy quarks, produced in hard scattering processes in the initial stages of the collisions, are considered as excellent probes for the strongly interacting deconfined medium formed in heavy-ion collisions. The $D_s(c\bar{s}/\bar{c}s)$ production is affected by the strangeness enhancement and the primordial charm quark production in heavy-ion collisions. Thus the modification of the D_s meson spectra in ultra-relativistic heavy-ion collisions provides a new interesting probe to the key properties of the hot nuclear medium.

The Heavy Flavor Tracker, installed in STAR in 2014, has been designed to extend STAR's capability of measuring heavy flavor production by the topological reconstruction of displaced decay vertices. It provides a unique opportunity for precise measurement of the D_s meson production.

We will present an independent study of D_s meson production via two decay channels $D_s \rightarrow \phi(1020) + \pi$, and $D_s \rightarrow K + K^*(892)$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Multivariate Data Analysis used to obtain D_s signal will also be presented.

Motivation

- Charm hadrons are a powerful tool to study the properties of the QCD medium created in ultra-relativistic heavy-ion collisions.
- The measurement of D_s meson production is of particular interest

Results

 D_s signal from $D_s \rightarrow \pi + \phi$ (1020) decay channel

- due to its valence strange quark content.
- A large enhancement of the D_s nuclear modification factor at Ultra-relativistic Heavy Ion Collision is predicted.

Experimental Setup

Vertex Position Detector (VPD)

Time of Flight (TOF)

Time Projection Chamber (TPC)

 Measurement of a charged particle energy loss (dE/dx)

• Tracking and momentum reconstruction Heavy Flavor Tracker (HFT)

• Four layer silicon detector, provides high space point resolution (DCA < 50 microns for 750 MeV/c kaons)

Decay Channels Investigated

 $D_s^+ \to \phi(1020) + \pi^+ \to k^+ + k^- + \pi^+$

BR:2.32 %

 $D_s^+ \to k^+ + \overline{k^{*0}}(892) \to k^+ + k^- + \pi^+$

BR: 2.60 %

 W^+

 $\bigcirc \pi^{\neg}$

PRL 110, 112301 (2013)

 D_s^+

K

 \bigcirc

TMVA Method

TMVA stands for Toolkit for Multi-Variate Analysis

0.015

Signal

1.975

- Toy-MC simulation
- Momentum resolution obtained from real data

Background

• Side-Band Background Mass Window $|M_{\phi} - M_{\phi}^{PDG}| < 8 \text{ MeV}$

0.015

- $dca_k dca_\pi$: kaon and pion Dca (Distance of Closest Approach) to the primary vertex.
- $dca_{\pi kk_max}$: the maximum pair Dca in three combination pairs .
- $cos(\theta_{point})$: the angle between D_s meson momentum and flight line, which is defined by the positions of the primary and secondary vertices in the laboratory frame
- decayLenght: *D_s* meson candidate flight length.
- v0diff : The maximum distance between three combination pairs

The cuts used for D_s candidates with p_T of 2.5 GeV/c – 4.5 GeV/c

dca _k	dca_{π}	$dca_{\pi kk_max}$	$\cos(heta_{point})$	v0diff
>100um	>70um	<60um	>0.995	<400um

signals in 3 centrality bins and 2 decay channels were observed.

• Ongoing study to improve the D_s signal with TMVA method and efficiency correction.

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations

