Bayesian characterization of the initial state and QGP medium

J. E. Bernhard, J. Scott Moreland, Steffen A. Bass

Goal
Perform a systematic model-to-data comparison using an event-by-event heavy-ion collision model. Simultaneously tune all model parameters to optimally reproduce experimental data. Extract probability distributions for each parameter. More information about the methodology.

- J. E. Bernhard et al., PRC 91 054910, 1502.0039.
- S. Pratt et al., PRL 114 202301, 1501.0442.
- J. Novak et al., PRC 89 034917, 1303.5769.

Input parameters
- Initial condition normalization p
- Entropy deposition parameter k
- Nucleon fluctuation parameter w
- Gaussian nucleon width η
- Shear viscosity at $T = 0.154$ GeV η
- Slope of shear viscosity above T_c ζ
- Bulk viscosity normalization ζ
- Hydro to UrQMD switching temp.

Posterior distribution
Diagonals
- Probability distributions of each parameter, integrating out all others
Off-diagonals
- Pairwise probabilities showing correlations between parameters

Diagonals
- Posterior mode (labeled for strong peaks)
- Probability of parameters given model and data
- Probability of observing experimental data given prior parameters
- Prior knowledge of parameters

Posterior samples
- Draw random samples from MCMC chain
- Gaussian process emulator
 - Non-parametric interpolation / fast surrogate to full model
 - Markov chain Monte Carlo random walk through parameter space weighted by posterior probability

Model
Initial conditions
- T_{ENTo} (parametric model)
- T_{UrQMD}
- p = tunable entropy deposition parameter
- See J. Scott Moreland’s poster

Experimental data
- ALICE collaboration
 - Pb+Pb collisions at $\sqrt{s}=2.76$ TeV
 - yields and mean p_T
- PRL 107 032301, 1105.3865.
- PRC 88 044910, 1303.0737.

Key results
- Determined scaling of initial entropy deposition
- Extracted new measurement of $(\eta/s)_{\text{RHIC}}$; need RHIC data to determine full T-dependence
- Found clear preference for nonzero bulk viscosity

Outlook
- Combine RHIC and LHC data
- Pre-equilibrium (free streaming) and tunable thermalization time
- Sensitivity analysis

Flow cumulants
- Determine full T-dependence of $(\eta/s)(\zeta)$; need RHIC data to constrain a linear combination of η/s min and slope
- n/s at ~220 MeV appears to be most important at LHC

Temperature dependence of viscosity
- $T_c = 0.154$ GeV
- Hydro-to-UrQMD switching temp.
- Slightly below HotQCD EOS, $T_c = 0.154$ GeV
- η/s at 220 MeV appears to be most important at LHC

Gaussian process emulator
- Gaussian process emulator
- HotQCD EOS
- UrQMD
- ALICE collaboration
 - Pb+Pb collisions at $\sqrt{s}=2.76$ TeV
 - yields and mean p_T
- PRL 107 032301, 1105.3865.
- PRC 88 044910, 1303.0737.

Entropy deposition parameter p
- $p = 0$

Outlook
- Determine scaling of initial entropy deposition
- Extracted new measurement of $(\eta/s)_{\text{RHIC}}$; need RHIC data to determine full T-dependence
- Found clear preference for nonzero bulk viscosity

Posterior samples
- Identified particle yields
- Identified particle mean p_T
- Flow cumulants

Water bag
- $T_c = 0.154$ GeV
- hydro-to-UrQMD switching temp.
- Slightly below HotQCD EOS, $T_c = 0.154$ GeV

Model
Initial conditions
- T_{ENTo} (parametric model)
- T_{UrQMD}
- p = tunable entropy deposition parameter
- See J. Scott Moreland’s poster

Hydro
- Event-by-event VISH2+1
 - HotQCD EOS
 - T-dependent shear & bulk viscosity

Paritculation
OSU Cooper-Frye sampler

Hadronic phase
UrQMD

Experimental data
- ALICE collaboration
 - Pb+Pb collisions at $\sqrt{s}=2.76$ TeV
 - yields and mean p_T
- PRL 107 032301, 1105.3865.
- PRC 88 044910, 1303.0737.

Key results
- Determined scaling of initial entropy deposition
- Extracted new measurement of $(\eta/s)_{\text{RHIC}}$; need RHIC data to determine full T-dependence
- Found clear preference for nonzero bulk viscosity

Outlook
- Combine RHIC and LHC data
- Pre-equilibrium (free streaming) and tunable thermalization time
- Sensitivity analysis

Flow cumulants
- Determine full T-dependence of $(\eta/s)(\zeta)$; need RHIC data to constrain a linear combination of η/s min and slope
- n/s at ~220 MeV appears to be most important at LHC

Temperature dependence of viscosity
- $T_c = 0.154$ GeV
- hydro-to-UrQMD switching temp.
- Slightly below HotQCD EOS, $T_c = 0.154$ GeV
- η/s at 220 MeV appears to be most important at LHC

Gaussian process emulator
- Gaussian process emulator
- HotQCD EOS
- UrQMD
- ALICE collaboration
 - Pb+Pb collisions at $\sqrt{s}=2.76$ TeV
 - yields and mean p_T
- PRL 107 032301, 1105.3865.
- PRC 88 044910, 1303.0737.

Entropy deposition parameter p
- $p = 0$

Outlook
- Determine scaling of initial entropy deposition
- Extracted new measurement of $(\eta/s)_{\text{RHIC}}$; need RHIC data to determine full T-dependence
- Found clear preference for nonzero bulk viscosity

Posterior samples
- Identified particle yields
- Identified particle mean p_T
- Flow cumulants

Water bag
- $T_c = 0.154$ GeV
- hydro-to-UrQMD switching temp.
- Slightly below HotQCD EOS, $T_c = 0.154$ GeV
- η/s at 220 MeV appears to be most important at LHC

This work has been supported by NSF grant no. PHY-0941373 and by DOE grant no. DE-FG02-05ER41367. CPU time was provided by the Open Science Grid, supported by DOE and NSF.