Experimental overview on EM observables

Yosuke Watanabe
Center for Nuclear Study, the University of Tokyo
EM probes

Dilepton
- New results from PHENIX for $\sqrt{s_{NN}} = 200$ GeV (PHENIX)
- Collision energy/system size dependence (STAR)

Photon
- v_2 and v_3 of thermal photons (PHENIX)
- Thermal photon yield (ALICE)

EW boson
- Centrality dependence in Pb+Pb (ATLAS/CMS)
- Centrality dependence in p+Pb (ATLAS)
- nPDF in p+Pb (ATLAS/CMS/ALICE)
Dilepton
Au+Au $\sqrt{s_{NN}} = 200$ GeV

Au+Au PHENIX

Au+Au STAR

min. bias Au+Au $\sqrt{s_{NN}} = 200$ GeV

- DATA
- $\pi^0 \rightarrow \gamma e e$
- $J/\psi \rightarrow e e$
- $\eta \rightarrow \gamma e e$
- $\eta' \rightarrow e e$
- $c\bar{c} \rightarrow e e$ (PYTHIA)
- $\rho \rightarrow e e$
- \sum
- $\omega \rightarrow e e$ & $\rho^0 e e$
- $\phi \rightarrow e e$ & $\eta e e$
- $b\bar{b} \rightarrow e e$ (PYTHIA)
- $c\bar{c} \rightarrow e e$ (random correlation)

Au + Au $\sqrt{s_{NN}} = 200$ GeV (MinBias)

- $p_T > 0.2$ GeV/c, $|\eta^0| < 1, |y_{ee}| < 1$

- **Data/Cocktail**
- $\pi^0, \eta, \eta', \omega, \phi$
- $J/\psi, \psi', b\bar{b}, DY$
- $c\bar{c}$ PYTHIA

Data/Cocktail

PRC 81 (2010) 034911

PRC 92 (2015) 024912
New PHENIX results

- **Au+Au PHENIX (2010 data)**

 ![Graph](image)

- **HBD upgrade**
 - Better hadron rejection: 30% → 5%
- **Better signal sensitivity**
- **Analysis improvements**
 - Neural Network
 - Flow modulation incorporated in the mixed events by an exact analytical method
 - Absolutely normalized correlated BG

<table>
<thead>
<tr>
<th>0.3-0.76 (GeV/c²)</th>
<th>Data/cocktail ±stat ±syst ±model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENIX 2010</td>
<td>2.3 ± 0.4 ± 0.4 ± 0.2 (Pythia)</td>
</tr>
<tr>
<td></td>
<td>1.7 ± 0.3 ± 0.3 ± 0.2 (MC@NLO)</td>
</tr>
<tr>
<td>STAR</td>
<td>1.76 ± 0.06 ± 0.26 ± 0.29</td>
</tr>
</tbody>
</table>

Minimum bias data/cocktail

PHENIX and STAR results are now consistent
New PHENIX results

Au+Au PHENIX (2010 data)

- HBD upgrade
 - Better hadron rejection: 30% → 5%
- Better signal sensitivity
- Analysis improvements
 - Neural Network
 - Flow modulation incorporated in the mixed events by an exact analytical method
 - Absolutely normalized correlated BG

PHENIX and STAR results are now consistent

<table>
<thead>
<tr>
<th>0.3-0.76 (GeV/c^2)</th>
<th>Data/cocktail ± stat ± syst ± model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENIX 2010</td>
<td>2.3 ± 0.4 ± 0.9 ± 0.2 (Pythia)</td>
</tr>
<tr>
<td></td>
<td>1.7 ± 0.5 ± 0.3 ± 0.2 (MC@NLO)</td>
</tr>
<tr>
<td>STAR</td>
<td>1.76 ± 0.06 ± 0.26 ± 0.29</td>
</tr>
</tbody>
</table>

Minimum bias data/cocktail

arxiv: 1509.04667
Cross sections are derived using IMR in d+Au collisions

Uncertainty in extrapolation to m≈0

Lack of understanding in \(c\bar{c} \) cross section/correlation

Hadronic decays of D mesons (STAR, \(\text{PRL 113 (2014) 022301} \))

\[\frac{d\sigma^{pp}}{dy} = 171 \pm 26 \text{ } \mu\text{b} \text{ (PYTHIA)} \]
LMR (0.3 – 0.76 GeV/c²)

Au+Au PHENIX

\(p_T \) dependence

- Enhancement over all \(p_T \) range

centrality dependence

- Increase with centrality

arxiv: 1509.04667
- Two extreme scenarios:
 - $c\bar{c}$ correlation remains the same in Au+Au as in p+p/p+A
 - $c\bar{c}$ totally decorrelated
 - There is room for QGP radiation
- Newly installed detectors in PHENIX/STAR
 - VTX(PHENIX)/HFT(STAR): Rejection of off-vertex electrons
 - MTD(STAR): e-\mu (no contribution from QGP radiation)
Broadening of ρ meson explains the LMR excess in the energy region $\sqrt{s_{NN}} = 20$–200 GeV including p_T and centrality dependence.

Talk by M. Makek
Broadening of ρ meson describes LMR excess also in the heavier system

STAR preliminary

Talk by S. Yang
- Link to chiral restoration?
- Measurement of the a_1 meson is experimentally difficult
- According to PLB 731(2014)103, the medium-modified ρ and a_1 meson degenerate with each other at high T.

![Graph showing the broadening of ρ meson at different temperatures](image-url)
Acceptance corrected excess in STAR is consistent with that in NA60 within large experimental uncertainties.

- BESII: x10 statistics
- Dielectron excess $\propto T_{\text{fireball}}$
- Size/Energy dependence

PLB 750 (2015) 64
System size and energy dependence

Au+Au STAR
In+In NA60

Talk by S. Yang
- Fireball lifetime is longer in central collisions than in peripheral collisions
System size and energy dependence

- Fireball lifetime is longer in central collisions than in peripheral collisions
- Fireball lifetime is longer in central 200 GeV than in low energies

Talk by S. Yang

PLB 750 (2015) 64
EPJC 59 (2009) 607
- Ar+KCl: The spectrum is well described by a model
 - LVM broadening + system evolution with UrQMD
- pp: excess from cocktail
 - Insufficient description of Resonance → pee
Future Low energy experiments

- RHIC BES II (2018-)
- FAIR SIS100 HADES/CBM (2022-)
- FAIR SIS300 CBM (???)
- NICA MPD (2019-)
- J-PARC HI (???)
- SPS NA60+ (???)

Talk by V. Kekelidze
Talk by H. Sako

$\sqrt{s_{NN}}$ (GeV)
In-medium modification of ϕ meson in cold nuclear matter
J-PARC pA: E16 experiment (2017-)

Poster by K. Ozawa

x100 stat, x2 mass resolution of E325
LHC-ALICE (2020-)

- Midrapidity
 - Inner Tracking System (ITS): Rejection of $c\bar{c}$ contribution, Less material budget
 - Time Projection Chamber (TPC): Continuous readout using GEM
- Forward rapidity (-4 < η < -2.5)
 - Muon Forward Tracker (MFT): Improve mass resolution

Talk by P. S. Reichelt

Midrapidity

Forward

![Graphs showing data analysis](image-url)
Photon
- Excess from pQCD component is visible
 - PHENIX: $T_{\text{slope}} \sim 240 \pm 20$ MeV independent of centrality
 - ALICE: $T_{\text{slope}} \sim 304 \pm 11^{\text{stat}} \pm 40^{\text{syst}}$ MeV (0-20%)
- PHENIX: $dN/dy \propto N_{\text{part}}^\alpha$ ($\alpha = 1.38 \pm 0.03^{\text{stat}} \pm 0.07^{\text{syst}}$)
- Similar to dielectron excess ($\alpha = 1.44 \pm 0.1$, STAR)
- Difficult to explain both “large yield” and “large v_2 and v_3”
- Many new theoretical ideas: more hadron-hadron interaction in HG, enhanced photon around T_c, semi-QGP, viscous correction, initial magnetic field etc
- Models tend to underestimate yield and v_2
- Similar trend as PHENIX? Theory lines are lower than data points both in yields and v_2
EW boson in Pb+Pb

- Understanding of collision geometry
- Baseline for the study of quenching via EW-jet
- No deviation from N_{coll} scaling is seen
 - Similar observation in Z (ATLAS) and W (CMS)
- Assuming EW boson production should scale with N_{coll}, data favors the standard Glauber as valid description of collision geometry in p+Pb collisions.
The shapes of rapidity distributions are better described by CT10+EPS09.
Summary

Dilepton

- PHENIX and STAR results at $\sqrt{s_{NN}} = 200 \text{ GeV}$ are now consistent.
- Uncertainty in the modeling of $c\bar{c}$ contribution affects both LMR and IMR.
- Acceptance corrected excess is studied as a function of system size/collision energy.

Photon

- Large yield, v_2 and v_3 of thermal photons keeps being a source of new theoretical ideas.
 - Later time emission seems significant.

EW bosons

- Scale with N_{coll} in PbPb collisions.
- nPDF effects are visible in pPb collisions.
\(\rho \) broadening

In+In NA60

\[
\frac{dN_{ch}}{d\eta} = 140
\]

all \(p_T \)

Au+Au STAR

Data - Cocktail

- Rapp: vacuum \(\rho \) + QGP
- Rapp: broadened \(\rho \) + QGP
- PHSD: broadened \(\rho \) + QGP

\[M_{ee} (\text{GeV}/c^2) \]

References

- EPJC 61 (2009) 711
- PRC 92 (2015) 024912
Glauber and GGCF

$p+\text{Pb ATLAS}$

ATLAS

$p+\text{Pb, 1 \mu b}^{-1}$

$\sqrt{s_{NN}} = 5.02 \text{ TeV}$

$y_{\text{cm}} = 0.465$

$-2.7 < \eta < 2.7$

$2 < \eta < 2.7$

$0 < \eta < 1$

$-1 < \eta < 0$

$-2.7 < \eta < -2$

Glauber

GGCF $\omega_{g}=0.11$

GGCF $\omega_{g}=0.2$

arxiv:1508.00848