Experimental overview on EM observables

Yosuke Watanabe Center for Nuclear Study, the University of Tokyo

EM probes

Dilepton

- New results from PHENIX for $\sqrt{s_{NN}} = 200$ GeV (PHENIX) - Collision energy/system size dependence (STAR)

Photon

- v_2 and v_3 of thermal photons (PHENIX)
- Thermal photon yield (ALICE)

EW boson

- Centrality dependence in Pb+Pb (ATLAS/CMS)
- Centrality dependence in p+Pb (ATLAS)
- nPDF in p+Pb (ATLAS/CMS/ALICE)

Dilepton

Au+Au $\sqrt{S_{NN}}$ = 200 GeV

Au+Au PHENIX

New PHENIX results

HBD upgrade

۲

- Better hadron rejection: $30\% \rightarrow 5\%$
- Better signal sensitivity
- Analysis improvements
 - Neural Network
 - Flow modulation incorporated in the mixed events by an exact analytical method
 - Absolutely normalized correlated BG

Minimum bias data/cocktail

0.3-0.76 (GeV/c²)	Data/cocktail ±stat ±syst ±model
PHENIX 2010	$2.3 \pm 0.4 \pm 0.4 \pm 0.2$ (Pythia) $1.7 \pm 0.3 \pm 0.3 \pm 0.2$ (MC@NLO)
STAR	$1.76 \pm 0.06 \pm 0.26 \pm 0.29$

PHENIX and STAR results are now consistent

New PHENIX results

- HBD upgrade
 - Better hadron rejection: $30\% \rightarrow 5\%$
 - Better signal sensitivity
- Analysis improvements
 - Neural Network
 - Flow modulation incorporated in the mixed events by an exact analytical method
 - Absolutely normalized correlated BG

PHENIX and STAR results are now consistent

cc in cocktail: Pythia vs MC@NLO

	Talk by M. Makek
	d $\sigma^{pp}_{c\overline{c}}$ /dy (µb)
PYTHIA	$106 \pm 9^{stat} \pm 33^{syst}$
MC@NLO	$287 \pm 29^{stat} \pm 100^{syst}$
	PRC 91 (2015) 014907

- Cross sections are derived using IMR in d+Au collisions
- Uncertainty in extrapolation to m~0
 - ² Lack of understanding in $c\bar{c}$ cross section/correlation
- Hadronic decays of D mesons (STAR, PRL 113 (2014) 022301)
 - $d\sigma/dy = 171 \pm 26 \mu b$ (PYTHIA)

LMR $(0.3 - 0.76 \text{ GeV/c}^2)$

p_T dependence

centrality dependence

arxiv: 1509.04667

Enhancement over all p_T range

Increase with centrality

7

IMR (1.2 – 2.8 GeV/c²): QGP radiation

- Two extreme scenarios:
 - $c\bar{c}$ correlation remains the same in Au+Au as in p+p/p+A
 - *cc* totally decorrelated
 - There is room for QGP radiation
- Newly installed detectors in PHENIX/STAR
 - VTX(PHENIX)/HFT(STAR): Rejection of off-vertex electrons
 - MTD(STAR): e-μ (no contribution from QGP radiation)

ρ broadening

Broadening of ρ meson explains the LMR excess in the energy region $\sqrt{s_{NN}} = 20-200 \text{ GeV}$ including p_T and centrality dependence

ρ broadening

Broadening of p meson describes LMR excess also in the heavier

system

Talk by S. Yang

Broadening of p meson

- Link to chiral restoration?
 - Measurement of the a₁ meson is experimentally difficult
 - According to PLB 731(2014)103, the medium-modified ρ and a₁ meson degenerate with each other at high T.

Acceptance corrected LMR excess

Acceptance corrected excess in STAR is consistent with that in NA60 within large experimental uncertainties

- BESII: x10 statistics
- Dielectron excess ∝ T_{fireball}

12

System size and energy dependence

Talk by S. Yang

PLB 750 (2015) 64 EPJC 59 (2009) 607

System size and energy dependence

PLB 750 (2015) 64 EPJC 59 (2009) 607

 Fireball lifetime is longer in central collisions than in peripheral collisions

Talk by S. Yang

System size and energy dependence

Talk by S. Yang

- Fireball lifetime is longer in central collisions than in peripheral collisions
- Fireball lifetime is longer in central 200 GeV than in low energies

Low energy: HADES

- Ar+KCI: The spectrum is well described by a model

- LVM broadening + system evolution with UrQMD
- pp: excess from cocktail
 - Insufficient description of Resonance \rightarrow pee

Future Low energy experiments

J-PARC pA: E16 experiment (2017-)

KEK E325 p+C p+Cu counts/[6.7MeV/c²] counts/[6.24eV/c² С βγ<1.25 Cu βγ<1.25 60 SLC 50 20 γ^2 /ndf=83/50 γ^{2} /ndf=36/50 counts/[6.7MeV/c² .25<βγ<1.75 counts/[6.7MeV/c² 00 00 .25<βγ<1.75 Cu 00 50 50 χ^{2} /ndf=43/50 $r^{2}/ndf = 63/50$ counts/[6.7MeV/c²] 1.75<βγ Cu 1.75<βγ 100 FAS χ^2 /ndf=55/50 γ^{2} /ndf=46/50 1.1 1.2 0.9 1.1 [GeV/c²] [GeV/c²] Poster by K. Ozawa

In-medium modification of ϕ meson in cold nuclear matter

PRL98 (2007) 042501

J-PARC pA: E16 experiment (2017-) Poster by K. Ozawa

18

LHC-ALICE (2020-)

- Midrapidity
 - Inner Tracking System (ITS): Rejection of $c\bar{c}$ contribution, Less material butdget
 - Time Projection Chamber (TPC): Continuous readout using GEM
- Forward rapidity (-4 < η < -2.5)
 - Muon Forward Tracker (MFT): Improve mass resolution

Midrapidity

Talk by P. S. Reichelt

CERN-LHCC-2013-014

10.1109/NSSMIC.2012.6551391

J. Phys. G 41 (2014) 087001

Photon

- Excess from pQCD component is visible
 - PHENIX: $T_{slope} \sim 240 \pm \sim 20$ MeV independent of centrality
 - ALICE: $T_{slope} \sim 304 \pm 11^{stat} \pm 40^{syst}$ MeV (0-20%)
- PHENIX: dN/dy $\propto N_{part}^{\alpha}$ (α = 1.38 \pm 0.03^{stat} \pm 0.07^{syst})
 - Similar to dielectron excess ($\alpha = 1.44 \pm 0.1$, STAR)

v_2 and v_3

Au+Au 200 GeV PHENIX

arxiv: 1509.07758

Difficult to explain both "large yield" and "large v₂ and v₃"
Many new theoretical ideas: more hadron-hadron interaction in HG, enhanced photon around T_c, semi-QGP, viscous correction, initial magnetic field etc

Comparison with models

arxiv: 1509.07758

Models tend to underestimate yield and v₂

Comparison with models

Similar trend as PHENIX? Theory lines are lower than data points both in yields and v₂

EW boson

EW boson in Pb+Pb

- Understanding of collision geometry
- Baseline for the study of quenching via EW-jet
- No deviation from N_{coll} scaling is seen
 - Similar observation in Z (ATLAS) and W (CMS)

GGCF: Glauber-Gribov Color Fluctuation

Talk by I. Grabowska-Bold

Z p+Pb ATLAS

Assuming EW boson production should scale with N_{coll} , data favors the standard Glauber as valid description of collision geometry in p+Pb collisions 27

JHEP03(2011)071

- The shapes of rapidity distributions are better described by CT10+EPS09 ²⁸

Summary

Dilepton

- PHENIX and STAR results at $\sqrt{s_{NN}} = 200 \ GeV$ are now consistent
- Uncertainty in the modeling of cc̄ contribution affects both LMR and IMR
- Acceptance corrected excess is studied as a function of system size/collision energy

Photon

- Large yield, v₂ and v₃ of thermal photons keeps being a source of new theoretical ideas
 - Later time emission seems significant

EW bosons

- Scale with N_{coll} in PbPb collisions
- nPDF effects are visible in pPb collisions

Model comparisons: STAR

Au+Au STAR

PRC 92 (2015) 024912

p broadening

Glauber and GGCF

arxiv:1508.00848