Open heavy-flavor measurements

Ralf Averbeck

ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Quark Matter 2015

The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

September 27 – October 3, 2015

Kobe, Japan

Heavy flavor: a unique probe

- heavy quarks: charm (m_c ~ 1.5 GeV), beauty (m_b ~ 5 GeV)
- $m_{c,b} >> \Lambda_{QCD}$ • heavy quarks = genuine hard probes, even at low p_T
- large mass \rightarrow short formation time: $\tau_{c.b} \sim 1/2m_{c.b} < 0.1$ fm $<< \tau_{QGP} \sim 5-10$ fm

heavy quarks are unique

- interactions with produced QCD medium don't change the flavor but can modify the phase-space distribution of heavy quarks
- thermal production rate in the QGP is "small" (may be measurable → T)
- → destruction or creation in the medium is difficult
- → transported through the whole evolution of the system

Open heavy-flavor measurements

heavy-flavor hadron decays via weak interaction:
 decay lengths cτ ~ few 100 μm → measure decay products

Testing pQCD calculations in pp collisions

RHIC: $\sqrt{s} = 200, 500 \text{ GeV}$

LHC: $\sqrt{s} = 2.76, 7, 13 \text{ TeV}$

Heavy quarks in pp collisions

- testing ground for perturbative QCD calculations
- relevant production mechanisms on the parton level
 - LO: gluon fusion, quark-antiquark annihilation
 - NLO: gluon splitting, flavor excitation
 - or even more complex, e.g.
 Multi Parton Interactions (MPI)
- reference for p(d)-A and A-A collisions

Heavy-flavor hadron production

pQCD calculations

- FONLL: JHEP 1210(2012)37
- GM-VFNS: EPJ C72(2012)2082
- k_T factorization: PRD 87(2013)094022
- pQCD calculations in agreement with measurements within substantial exp. and theor. uncertainties

R. Averbeck, 🔀 🚟 📜

Leptons from heavy-flavor decays

- e[±] (μ[±]) from HF decays at mid (forward) rapidity
- pQCD calculations in reasonable agreement with data within uncertainties

Beauty production

EPJC 71(2011)1846

m,,, (GeV/c²)

b-jet p_{_} (GeV)

40 60 80 100 120 140 160 180 200

Total charm & beauty cross sections

- experimental precision not yet satisfactory (e.g. for quarkonia reference!)
 - extend kinematic coverage (low $p_{\tau}!$)
 - larger data samples
 - improved control of systematic uncertainties
- can data constrain pQCD parameters?
- further constraints: more differential measurements

D-meson yields vs. multiplicity

do Multi-Parton Interactions (MPI) play a role on the hard scale relevant for heavy-flavor production?

- D-meson yields increase more than linear with dN_{ch}/dη
- similar increase for open and hidden charm
 behavior driven by production mechanism, not hadronization
- similar trend for non-prompt J/ψ from open-beauty decays
- models including MPI describe observed trend

Cold nuclear matter effects in p(d)-A collisions

RHIC: d-Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

LHC: p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Heavy quarks in p(d)-A collisions

- quantify cold nuclear matter effects
 - nuclear modification of Parton Distribution Functions (shadowing, gluon saturation)
 - k_T broadening
 - energy loss in cold nuclear matter
 - multiple binary collisions
- final state effects?
- reference for A-A collisions

Electrons from HF decays at RHIC

- R_{dA} > 1 for low-p_T electrons at mid rapidity (also for muons at backward rapidity)
- no "large" enhancement via anti-shadowing expected
- consistent with radial flow
 - → D-meson measurement highly desirable

HF decay electron R_{pPb} at the LHC

$$R_{pPb} = rac{d\sigma_{pPb}/dp_T}{A imes d\sigma_{pp}/dp_T}$$

- R_{pPb} consistent with unity and described by models including initial-state effects or radial flow within uncertainties
- R_{pPb} of beauty-hadron decay electrons consistent with inclusive HF decay electron R_{pPb} and with unity
- no indication for suppression at intermediate/high p_T

Kang et al.: PL B740 (2015) 23; Sharma et al.: PR C80 (2009) 054902;

FONLL: M. Cacciari et al., JHEP 9805 (1998) 007; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065

HF decay muon R_{pPb} at the LHC

Forward: p-going

- $R_{\rm pPb}$ of HF decay muons is consistent with unity at forward rapidity and slightly larger than unity at backward rapidity for 2 < $p_{\rm T}$ < 4 GeV/c
- described within uncertainties by models including cold nuclear matter effects

NLO (MNR): M. Mangano et al., NP B373 (1992) 295; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065; Z. B. Kang et al.: PL B740 (2015) 23; I. Vitev: PR C75 (2007) 064906

D-meson R_{pPb} at the LHC

- R_{pPb} consistent with unity for all D-meson species
- described within uncertainties by models including initial-state effects
- no indication for suppression at intermediate/high p_T

H. Fujii & K. Watanabe, arXiv:1308.1258; pQCD NLO (MNR): M. Mangano et al., NP B373 (1992) 295; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065; Vitev: PR. C75 (2007) 064906

Multiplicity (in)dependence: QpPb

 multiplicity dependent nuclear modification factor Q_{DPb}

$$Q_{pPb}^{mult} = \frac{dN_{pPb} / dp_{T}}{\left\langle T_{pPb}^{mult} \right\rangle d\sigma_{pp} / dp_{T}}$$

- nuclear overlap function <T_{pPb}> determined based on energy deposited by neutrons in Zero Degree Calorimeters
- prompt D-meson Q_{pPb}
 - no multiplicity dependence
 - no p_T dependence in any multiplicity class

B-meson R_{pPb} at the LHC

- B-meson R_{pPb} for various species
 - pp reference from FONLL pQCD
 - consistent with unity
 no indication for significant cold nuclear matter effects
- capability to reconstruct B mesons in Pb-Pb collisions as well!

Beauty and charm jets

- b-jet R_{pPb} consistent with unity within uncertainties
 - no significant suppression due to cold nuclear matter effects

- first c-jet measurement in nuclear collisions
 - PYTHIA agrees with measured spectrum

Dense/hot QCD matter effects in A-A collisions

RHIC: Au-Au (U-U) collisions at $\sqrt{s_{NN}}$ = 200 (193) GeV

LHC: Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Heavy quarks in A-A collisions

- interaction of heavy quarks with hot/dense medium
 - parton energy loss via radiative and collisional processes
 - depends on
 - color charge
 - quark mass
 - path length in the medium
 - medium density and temperature
 - \rightarrow expect: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
 - \rightarrow R_{AA}(light hadron) < R_{AA}(D) < R_{AA}(B)?
 - caveats:
 - different shapes of parton p_T distributions in pp collisions
 - different fragmentation functions
 - role of soft particle production at low p_T

collectivity in the QGP

- initial spatial asymmetry
 - → azimuthal asymmetry of particle emission in momentum space
- heavy quarks participate in collectivity of the medium in case of sufficient re-scattering → approach to thermalization
- high p_T: path-length dependence of energy loss → azimuthal asymmetry

$$R_{AA} = \frac{dN_{AA}/dp_T}{< T_{AA} > \times d\sigma_{pp}/dp_T}$$

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos(\varphi - \Psi_2)}{2v_2 \cos(\varphi - \Psi_2)} + \dots)$$

B-jet suppression at the LHC

- fully reconstructed b jets in Pb-Pb collisions at 2.76 TeV
 - suppressed compared to measured pp reference
 - qualitatively consistent with light-flavor jet suppression
 - b-jet suppression shows strong centrality dependence

Electrons at RHIC

- electrons from HF decays in Au-Au collisions at 200 GeV
 - suppression of the yield at high p_T
 - binary scaling of the total yield
 - positive v₂
 - model comparison:

constrain transport properties of the produced medium

Electrons in U-U collisions at RHIC

- new pp reference from STAR for electrons from HF decays
 - p_T reach extended to higher and lower p_T

U-U collisions

 energy density ~20% larger than in same centrality
 Au-Au collisions

 R_{AA} for electrons from HF decays in 5% most central collisions systematically lower than for Au-Au collisions, but still within uncertainties

$c \rightarrow e vs. b \rightarrow e at RHIC$

PHENIX Silicon Vertex Detector (VTX)

DCA_⊤ resolution ~ 60 μm

unfolding of measured electron dN/dp_T and DCA_T distributions

 \rightarrow dN/dp_T of c & b hadrons

- p_⊤e < 4 GeV/c</p>
 - electrons from beauty decays suppressed less than those from charm decays
- new constraints 2 1.5 for models

/ Re-fold

HF decay leptons at the LHC: R

- high-p_⊤ leptons suppressed
 - similar for HF decay electrons (|y| < 0.6) and muons (2.5 < y < 4, |y| < 1)
 - pronounced centrality dependence
 - also: hint for suppression of electrons from beauty decays
- cold nuclear matter effects small at high p_T
 - → hot/dense medium effect

ALI-PREL-74678

HF decay leptons at the LHC: v₂

v₂ > 0 at intermediate/high p_T

 similar for e[±] and μ[±] at mid rapidity and muons at forward rapidity

v₂ decreases towards central collisions⁶

- confirms strong interaction of heavy quarks with the medium
- charm (even beauty?) quarks participate in the collectivity of the QGP

D-meson suppression

- observed suppression in central Pb-Pb collisions at the LHC is due to the strong interaction of charm quarks with the dense/hot partonic medium
- hint for less suppression of D_s⁺ compared to non-strange D mesons at LHC/RHIC
 - expected if recombination plays a role in charm hadronization

TAMU: He et al.: PRL 110(2013)112301; Kuznetsova, Rafelski: EPJ C51(2007)113; Andronic et al.: PL B659(2008)149

R. Averbeck, 🝱 5

D-meson R_{AA} and v₂ at RHIC

STAR Heavy Flavor Tracker (HFT)

• DCA_T resolution ~ 30 μm

D⁰ mesons in Au-Au at 200 GeV

- \bullet $v_2 > 0$ for $p_T > 2$ GeV/c
- yield suppressed at high p_T
- enhancement at 1< p_T < 2 GeV/c (charm coalescence with flowing medium)
- R_{AA} and v₂ model comparisons constrain charm diffusion coefficient

D-meson v₂: RHIC vs. LHC

- RHIC: $D^0 v_2 < light-hadron v_2$ for $p_T < 3$ GeV/c
- D-meson v₂ measured by ALICE at the LHC
 - D-meson v2 > 0 and similar to charged-particle v_2
 - hint for increasing v₂ with decreasing centrality
- significant interaction of charm quarks with the medium
- \rightarrow collective motion of low-p_T charm quarks with the medium

D-meson R_{AA}: RHIC vs. LHC

- D mesons at the LHC and at RHIC
 - different trend for D-meson R_{AA} at low p_T?
- differences between Pb-Pb collisions at √s_{NN} = 2.76 TeV and

Au-Au collisions at $\sqrt{s_{NN}} = 0.2 \text{ TeV}$

- different shape of pp reference
- different modification of nPDFs
- different radial flow
- different impact of coalescence
- some models describe both measurements reasonably well (e.g. TAMU, PLB 735(2014)445)

D⁰ mesons at the LHC

- D⁰, D⁺, D^{*+}, D_s⁺ mesons measured by ALICE
- prompt D^0 measured by CMS in the range $2.5 < p_T < 40 \text{ GeV/c}$

- R_{AA} shows suppression in central Pb-Pb collisions relative to data/FONLL based reference
 - significant interaction of charm quarks with the medium
 - pronounced centrality dependence
 - tension with ALICE D-meson R_{AA} for p_T > 16 GeV/c
 - → difference in pp reference

R_{AA}: D-mesons vs. pions

naively: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b) \rightarrow (R_{AA}(\pi) < R_{AA}(D)) < R_{AA}(B)$

- D-meson and pion R_{AA} are compatible within uncertainties
- agreement consistent with models including
 - energy loss hierarchy: ∆E(g) > ∆E(u,d,s) > ∆E(c)
 - different shapes of the parton p_T distributions
 - different fragmentation functions

R_{ΔΔ}: D mesons vs. non-prompt J/ψ

naively: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

- similar <p_T> for D and B mesons
- indication for R_{AA}(D) < R_{AA}(J/ψ ← B)
 in central Pb-Pb collisions
- onfirmed by CMS D⁰ measurement

ALICE: arXiv:1506.06604 CMS: CMS-PAS-HIN-12-014 theory: PL B734(2014)286

consequence of mass difference of c and b quarks in pQCD based model calculation (Djordjevic, PL B734(2014)286)

- pQCD model including mass-dependent energy loss predicts a difference between the R_{AA} of D mesons and non-prompt J/ ψ similar to the observation
- similar for other calculations (BAMPS, WHDG, Vitev et al.)

Summary

- pp collisions
 - pQCD calculations describe heavy-flavor cross sections
 - interplay of soft and hard processes under investigation
 - what about correlations?
- p(d)-A collisions
 - no indication for substantial cold nuclear matter effects
 - what about collectivity in small systems?
- A-A collisions
 - strong interaction of heavy quarks with the medium
 - \rightarrow suppression of yields at high p_T consistent with partonic energy loss
 - → indication for charm (maybe beauty?) participating in the medium's collective expansion
- what is missing?
 - better precision, more statistics, extended p_T coverage (high and low (!) p_T)
 - smaller uncertainties and new differential measurements will help to
 - constrain model calculations quantitatively
 - address open questions concerning the energy-loss mechanisms, their pathlength dependence, thermalization, coalescence involving heavy quarks

