Open heavy-flavor measurements

Ralf Averbeck
ExtreMe Matter Institute EMMI and Research Division
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Quark Matter 2015
The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
September 27 – October 3, 2015
Kobe, Japan
Heavy flavor: a unique probe

- heavy quarks: charm ($m_c \sim 1.5$ GeV), beauty ($m_b \sim 5$ GeV)
- $m_{c,b} > \Lambda_{QCD}$
 - heavy quarks = genuine hard probes, even at low p_T
- large mass \rightarrow short formation time:
 $\tau_{c,b} \sim 1/2m_{c,b} < 0.1$ fm $\ll \tau_{QGP} \sim 5-10$ fm

- heavy quarks are unique
 - interactions with produced QCD medium don’t change the flavor but can modify the phase-space distribution of heavy quarks
 - thermal production rate in the QGP is “small“ (may be measurable $\rightarrow T$)
 - destruction or creation in the medium is difficult
 - transported through the whole evolution of the system
Open heavy-flavor measurements

- heavy-flavor hadron decays via weak interaction:
 - decay lengths $c\tau \sim \text{few } 100 \mu m \rightarrow \text{measure decay products}$

Full reconstruction of D meson hadronic decays

- $D^0 \rightarrow K^- \pi^+$
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- $D^{*+} \rightarrow D^0 \pi^+$
- $D_s^+ \rightarrow K^-K^+ \pi^+$

Semi-leptonic decays (c,b)

HF jets

Correlations with HF

Displaced J/ψ (from B decays)

Kobe, 2.10.2015

R. Averbeek, GSI
Testing pQCD calculations in pp collisions

RHIC: $\sqrt{s} = 200, 500$ GeV
LHC: $\sqrt{s} = 2.76, 7, 13$ TeV
Heavy quarks in pp collisions

- testing ground for perturbative QCD calculations
- relevant production mechanisms on the parton level
 - LO: gluon fusion, quark-antiquark annihilation
 - NLO: gluon splitting, flavor excitation
 - or even more complex, e.g. Multi Parton Interactions (MPI)

- reference for p(d)-A and A-A collisions
Heavy-flavor hadron production

- **STAR: \(D^0 \rightarrow K\pi, D^* \rightarrow D^0\pi \)**
 - STAR preliminary
 - pp \(\sqrt{s} = 200 \text{ GeV} \)

- **LHCb (at forward rapidity): \(D^0 \rightarrow K\pi \)**
 - \(\sqrt{s} = 13 \text{ TeV} \)
 - LHCb-PAPER-2015-041

- **ALICE: \(D^+ \rightarrow K\pi\pi \)**
 - ALICE
 - pp \(\sqrt{s} = 7 \text{ TeV}, L_{\text{int}} = 5 \text{ nb}^{-1} \)
 - JHEP 1201(2012)128

- **CMS: \(B^+ \rightarrow J/\psi K^+ \)**
 - CMS \(\sqrt{s} = 7 \text{ TeV} \)
 - L = 5.8 \text{ pb}^{-1}
 - BF (3.5%) and Lumi (11%) uncertainties not shown
 - PRL 108(2011)112001

- **\(\bullet \) pQCD calculations**
 - FONLL: JHEP 1210(2012)37
 - \(k_T \) factorization: PRD 87(2013)094022

- **\(\bullet \) pQCD calculations in agreement with measurements within substantial exp. and theor. uncertainties**
Leptons from heavy-flavor decays

- $e^\pm (\mu^\pm)$ from HF decays at mid (forward) rapidity
- pQCD calculations in reasonable agreement with data within uncertainties
Beauty production

- $b \rightarrow e^\pm X$
- $b \rightarrow J/\psi X$

- Also beauty production described by pQCD calculations

NEW

NEW

Kobe, 2.10.2015

R. Averbeck, GSI
Total charm & beauty cross sections

- Experimental precision not yet satisfactory (e.g. for quarkonia reference!)
 - Extend kinematic coverage (low p_T!)
 - Larger data samples
 - Improved control of systematic uncertainties

- Can data constrain pQCD parameters?
- Further constraints: more differential measurements

Kobe, 2.10.2015
D-meson yields vs. multiplicity

- do Multi-Parton Interactions (MPI) play a role on the hard scale relevant for heavy-flavor production?

- D-meson yields increase more than linear with $dN_{\text{ch}}/d\eta$
- similar increase for open and hidden charm → behavior driven by production mechanism, not hadronization
- similar trend for non-prompt J/ψ from open-beauty decays
- models including MPI describe observed trend

Kobe, 2.10.2015
Cold nuclear matter effects in p(d)-A collisions

RHIC: d-Au collisions at $\sqrt{s_{NN}} = 200$ GeV
LHC: p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
Heavy quarks in p(d)-A collisions

- quantify cold nuclear matter effects
 - nuclear modification of Parton Distribution Functions (shadowing, gluon saturation)
 - k_T broadening
 - energy loss in cold nuclear matter
 - multiple binary collisions

- final state effects?

- reference for A-A collisions

K.J. Eskola et al., JHEP 0904(2009)65
Electrons from HF decays at RHIC

- $R_{dA} > 1$ for low-p_T electrons at mid rapidity (also for muons at backward rapidity)
- no “large” enhancement via anti-shadowing expected
- consistent with radial flow
 - \rightarrow D-meson measurement highly desirable
HF decay electron R_{pPb} at the LHC

- R_{pPb} consistent with unity and described by models including initial-state effects or radial flow within uncertainties
- R_{pPb} of beauty-hadron decay electrons consistent with inclusive HF decay electron R_{pPb} and with unity
- no indication for suppression at intermediate/high p_T

Kobe, 2.10.2015
HF decay muon $R_{p\text{Pb}}$ at the LHC

$R_{p\text{Pb}}$ of HF decay muons is consistent with unity at forward rapidity and slightly larger than unity at backward rapidity for $2 < p_T < 4$ GeV/c described within uncertainties by models including cold nuclear matter effects.

Kobe, 2.10.2015

R. Averbeek,
D-meson R_{pPb} at the LHC

- R_{pPb} consistent with unity for all D-meson species
- described within uncertainties by models including initial-state effects
- no indication for suppression at intermediate/high p_T

Multiplicity (in)dependence: Q^{mult}_{pPb}

- multiplicity dependent nuclear modification factor Q^{mult}_{pPb}
 - nuclear overlap function $<T^{\text{mult}}_{pPb}>$ determined based on energy deposited by neutrons in Zero Degree Calorimeters
 - prompt D-meson Q^{mult}_{pPb}
 - no multiplicity dependence
 - no p_T dependence in any multiplicity class

\[
Q^{\text{mult}}_{pPb} = \frac{dN_{pPb} / dp_T}{\left< T^{\text{mult}}_{pPb} \right> d\sigma_{pp} / dp_T}
\]
B-meson R_{pPb} at the LHC

- B-meson R_{pPb} for various species
 - pp reference from FONLL pQCD
 - consistent with unity
 → no indication for significant cold nuclear matter effects
- capability to reconstruct B mesons in Pb-Pb collisions as well!

Kobe, 2.10.2015

R. Averbeck
Beauty and charm jets

- **b-jet** R_{pPb} consistent with unity within uncertainties
 - no significant suppression due to cold nuclear matter effects

- **first c-jet measurement in nuclear collisions**
 - PYTHIA agrees with measured spectrum
Dense/hot QCD matter effects in A-A collisions

RHIC: Au-Au (U-U) collisions at $\sqrt{s_{NN}} = 200 \ (193) \ GeV$

LHC: Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76\ TeV$
Heavy quarks in A-A collisions

- Interaction of heavy quarks with hot/dense medium
 - Parton energy loss via radiative and collisional processes
 - Depends on
 - Color charge
 - Quark mass
 - Path length in the medium
 - Medium density and temperature

 \[\rightarrow \text{expect: } \Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]

 \[\rightarrow R_{AA}\text{(light hadron)} < R_{AA}\text{(D)} < R_{AA}\text{(B)}? \]
 - Caveats:
 - Different shapes of parton p_T distributions in pp collisions
 - Different fragmentation functions
 - Role of soft particle production at low p_T

- Collectivity in the QGP
 - Initial spatial asymmetry
 \[\rightarrow \text{Azimuthal asymmetry of particle emission in momentum space} \]
 - Heavy quarks participate in collectivity of the medium in case of sufficient re-scattering \[\rightarrow \text{Approach to thermalization} \]
 - High p_T: Path-length dependence of energy loss \[\rightarrow \text{Azimuthal asymmetry} \]

\[
R_{AA} = \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T} \times \frac{< T_{AA}>}{N_0} \]

\[
dN/d\varphi = \frac{N_0}{2\pi} (1 + 2\nu_1 \cos(\varphi - \Psi_1) + 2\nu_2 \cos(\varphi - \Psi_2) + ...)\]
B-jet suppression at the LHC

- fully reconstructed b jets in Pb-Pb collisions at 2.76 TeV
 - suppressed compared to measured pp reference
 - qualitatively consistent with light-flavor jet suppression
 - b-jet suppression shows strong centrality dependence

PRL 113(2014)132301
Electrons at RHIC

- electrons from HF decays in Au-Au collisions at 200 GeV
- suppression of the yield at high p_T
- binary scaling of the total yield
- positive v_2
- model comparison: constrain transport properties of the produced medium

Kobe, 2.10.2015

R. Averbeck
Electrons in U-U collisions at RHIC

- New pp reference from STAR for electrons from HF decays
 - p_T reach extended to higher and lower p_T
- U-U collisions
 - Energy density ~20% larger than in same centrality Au-Au collisions

- R_{AA} for electrons from HF decays in 5% most central collisions systematically lower than for Au-Au collisions, but still within uncertainties

[Graphs and data plots illustrating the comparison between U-U and Au-Au collisions]
c\rightarrowe vs. b\rightarrowe at RHIC

- PHENIX Silicon Vertex Detector (VTX)
 - DCA$_T$ resolution ~ 60 μm
- unfolding of measured electron dN/dp_T and DCA$_T$ distributions
- dN/dp_T of c & b hadrons
- $p_T^e < 4$ GeV/c
 - electrons from beauty decays suppressed less than those from charm decays
- new constraints for models

Kobe, 2.10.2015

R. Averbeck, GSI
HF decay leptons at the LHC: R_{AA}

- **high-p_T** leptons suppressed
 - similar for HF decay electrons ($|y| < 0.6$) and muons ($2.5 < y < 4$, $|y| < 1$)
 - pronounced centrality dependence
 - also: hint for suppression of electrons from beauty decays

- **cold nuclear matter effects** small at high p_T → hot/dense medium effect
HF decay leptons at the LHC: v_2

- $v_2 > 0$ at intermediate/high p_T
 - similar for e^\pm and μ^\pm at mid rapidity and muons at forward rapidity
 - v_2 decreases towards central collisions
 - confirms strong interaction of heavy quarks with the medium
 - charm (even beauty?) quarks participate in the collectivity of the QGP
D-meson suppression

- observed suppression in central Pb-Pb collisions at the LHC is due to the strong interaction of charm quarks with the dense/hot partonic medium

- hint for less suppression of D_s^+ compared to non-strange D mesons at LHC/RHIC
 - expected if recombination plays a role in charm hadronization

Kobe, 2.10.2015
D-meson R_{AA} and v_2 at RHIC

- STAR Heavy Flavor Tracker (HFT)
- DCA$_T$ resolution $\sim 30 \, \mu$m

- D^0 mesons in Au-Au at 200 GeV
 - $v_2 > 0$ for $p_T > 2$ GeV/c
 - yield suppressed at high p_T
 - enhancement at $1 < p_T < 2$ GeV/c (charm coalescence with flowing medium)
 - R_{AA} and v_2 model comparisons constrain charm diffusion coefficient

Kobe, 2.10.2015
D-meson v_2: RHIC vs. LHC

- **RHIC:** D^0 $v_2 < \text{light-hadron } v_2$ for $p_T < 3$ GeV/c
- **D-meson v_2** measured by ALICE at the LHC
 - D-meson $v_2 > 0$ and similar to charged-particle v_2
 - Hint for increasing v_2 with decreasing centrality
- **significant interaction of charm quarks with the medium**
 \rightarrow collective motion of low-p_T charm quarks with the medium
D-meson R_{AA}: RHIC vs. LHC

- D mesons at the LHC and at RHIC
 - different trend for D-meson R_{AA} at low p_T?

- differences between
 - Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
 - Au-Au collisions at $\sqrt{s_{NN}} = 0.2$ TeV
 - different shape of pp reference
 - different modification of nPDFs
 - different radial flow
 - different impact of coalescence

- some models describe both measurements reasonably well (e.g. TAMU, PLB 735(2014)445)

ALICE: arXiv:1509.06888
STAR: PRL 113(2014)142301
D⁰ mesons at the LHC

- D⁰, D⁺, D∗⁺, Dˢ⁺ mesons measured by ALICE
- prompt D⁰ measured by CMS in the range 2.5 < p_T < 40 GeV/c

- R_AA shows suppression in central Pb-Pb collisions relative to data/FONLL based reference

 - significant interaction of charm quarks with the medium
 - pronounced centrality dependence
 - tension with ALICE D-meson R_AA for p_T > 16 GeV/c
 → difference in pp reference
R_{AA}: D-mesons vs. pions

naively: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b) \Rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

- D-meson and pion R_{AA} are compatible within uncertainties
- agreement consistent with models including
 - energy loss hierarchy: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c)$
 - different shapes of the parton p_T distributions
 - different fragmentation functions

Kobe, 2.10.2015

R. Averbeck, GSI
R_{AA}: D mesons vs. non-prompt J/ψ

naively: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

- similar $<p_T>$ for D and B mesons
- indication for $R_{AA}(D) < R_{AA}(J/\psi \leftarrow B)$ in central Pb-Pb collisions
- confirmed by CMS D0 measurement

consequence of mass difference of c and b quarks in pQCD based model calculation (Djordjevic, PL B734(2014)286)

- pQCD model including mass-dependent energy loss predicts a difference between the R_{AA} of D mesons and non-prompt J/ψ
 similar to the observation
- similar for other calculations (BAMPS, WHDG, Vitev et al.)

Kobe, 2.10.2015

ALICE: arXiv:1506.06604
CMS: CMS-PAS-HIN-12-014
theory: PL B734(2014)286
Summary

- **pp collisions**
 - pQCD calculations describe heavy-flavor cross sections
 - interplay of soft and hard processes under investigation
 - what about correlations?

- **p(d)-A collisions**
 - no indication for substantial cold nuclear matter effects
 - what about collectivity in small systems?

- **A-A collisions**
 - strong interaction of heavy quarks with the medium
 - suppression of yields at high p_T consistent with partonic energy loss
 - indication for charm (maybe beauty?) participating in the medium‘s collective expansion

- **what is missing?**
 - better precision, more statistics, extended p_T coverage (high and low (!) p_T)
 - smaller uncertainties and new differential measurements will help to
 - constrain model calculations quantitatively
 - address open questions concerning the energy-loss mechanisms, their path-length dependence, thermalization, coalescence involving heavy quarks