FORWARD DI-JET PRODUCTION IN DILUTE-DENSE COLLISIONS

Elena Petreska

Centre de Physique Théorique, École Polytechnique, 91128 Palaiseau, France and Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Collaboration with P. Kotko, K. Kutak, C. Marquet, S. Sapeta and A. van Hameren

I. CONNECTION OF CGC AND HEF

WE DIRECTLY SHOW THAT:

THE HIGH ENERGY FACTORIZATION FORMULA

\[\frac{d^2 \sigma_{\text{dijets}+}}{d^2 p_T} = \frac{1}{\bar{u}^2 s} \sum_{i,j} \hat{f}_i(x_i, \mu_F) \hat{f}_j(x_j, \mu_F) \sum_{k} K_{xk}^{(i)}(s_{ik}) K_{yj}^{(j)}(s_{jk}) \]

IS EQUIVALENT TO

THE COLOR GLASS CONDENSATE THEORY IN THE DILUTE TARGET LIMIT \(Q_s \ll k_t \sim P_t \):

\[\frac{d^2 \sigma_{\text{dijets}+}}{d^2 p_T} = \frac{1}{\bar{u}^2 s} \sum_{i,j} \hat{f}_i(x_i, \mu_F) \hat{f}_j(x_j, \mu_F) \sum_{k} K_{xk}^{(i)}(s_{ik}) K_{yj}^{(j)}(s_{jk}) \]

II. IMPROVED TMD FACTORIZATION

WE DERIVE AN IMPROVED TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION FORMULA:

\[\frac{d^2 \sigma_{\text{dijets}+}}{d^2 p_T} = \frac{1}{\bar{u}^2 s} \sum_{i,j} \hat{f}_i(x_i, \mu_F) \hat{f}_j(x_j, \mu_F) \sum_{k} K_{xk}^{(i)}(s_{ik}) K_{yj}^{(j)}(s_{jk}) \frac{1}{c_{\text{cd}}} \]

IMPROVEMENTS:

INCLUDES ALL FINITE-\(N_c \) CORRECTIONS;
THREE NEW GLUON DISTRIBUTIONS;
ONLY TWO INDEPENDENT GLUON DISTRIBUTIONS PER CHANNEL.

III. UNIFYING FORMULA

WE DERIVE A UNIFYING TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION FORMULA

THE NEW FORMULA IS VALID FOR ARBITRARY VALUE OF THE MOMENTUM IMBALANCE OF THE JETS, \(k_t \)

\[\frac{d^2 \sigma_{\text{dijets}+}}{d^2 p_T} = \frac{1}{\bar{u}^2 s} \sum_{i,j} \hat{f}_i(x_i, \mu_F) \hat{f}_j(x_j, \mu_F) \sum_{k} K_{xk}^{(i)}(s_{ik}) K_{yj}^{(j)}(s_{jk}) \frac{1}{c_{\text{cd}}} \]

IMPROVEMENTS:

THE MATRIX ELEMENTS ARE OFF-SHELL:

We derive \(k_t \)-dependent matrix elements for TMD factorization with two independent methods:
Standard Feynman diagrams technique;
Helicity method for color-ordered amplitudes.

The matrix elements in the new formula are:

\[\hat{f}_i(x_i, \mu_F) \hat{f}_j(x_j, \mu_F) \]

IV. PHENOMENOLOGY

WE CALCULATE THE TMD GLUON DISTRIBUTIONS THAT ENTER IN THE UNIFYING FORMULA WITH Kutak-Sapeta non-linear evolution: AND Golec-Biernat-Wusthoff model:

AZIMUTHAL CORRELATIONS IN FORWARD DI-JET PRODUCTION WITH THE UNIFYING FORMULA:

We observe a suppression in the correlation limit and an increase in the decorrelation sector in comparison to HEF:

SUMMARY

- We derive the High-Energy Factorization formula from CGC in the dilute target limit;
- We extend the TMD factorization formula to finite \(N_c \), and we write it with two \(k_t \)-dependent gluon distributions per channel;
- We derive an improved TMD factorization that unifies the different \(k_t \) regimes.

Acknowledgments

We thank the Japan Society for the Promotion of Science (JSPS) for the travel support through the Japan-France Integrated Action Program (SAKURA). We thank Quark Matter 2015 for the Fellowship for young participants.

References