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Is there sufficient energy density in pPb to create a QGP?
Energy density for a given overlap area A at a given time z given by

1\(1)\dE,
E =
T /\A/ dy
Are there long-range n-correlations in E; production?

What are the auto-correlations induced by using a certain n
region to define centrality?

Syc = E; (peripheral) /E, (central)
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Review of PbPb dE;/dn results

*CMS Collaboration PRL 109, 152303 E. rises strongly with centrality. Centrality

1 dependence is not a strong function of n.
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For pPb fluctuations in N__, are large

- CMS Simulation Ei<||n|<5.2 ((;eV): i
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Pseudorapidity & Centrality Definition

By CMS convention the proton moves toward
positive pseudorapidity. This implies that the center
of mass of the pPb collision is at n = +0.45

Centrality Name

HF Double E-within4 <|n| <5
HF Single E. within -4 > n > -5
Nrrack Tracks within |n| < 2.4
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Trigger & Event Selection

* Level 1 Zero-bias trigger, required two beams

* The high level trigger required one track in
the pixel detector with |n| <2.5and p-> 0.4
GeV/c

* For noise studies take empty events with no
beam




Calculation of E+
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ldE EE C
Ndn NAn

N is the number of events corrected for trigger efficiency

An is the width of the n bin used

E/ is the E; of a given particle flow object above noise

The Monte Carlo correction factor is defined by

E k E; (generated)
E E] (reconstructed)
J

C(n)=

Monte Carlo is weighted to have the same E./particle as the data and

after reconstruction is subject to exactly the same cuts as data
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Definition of Sy ratio

dE,

in (peripheral, )
Spe (77) = dE,

dn

(central,n)

- EZE;" (peripheral) _C(peripheral,n)
i E E/(central)  C(central,n)
J

Spe (77)

* Spc captures the centrality dependence of E production (but with
smaller systematic errors)

« Effects such as calibration or radiation cancel in the ratio

« By construction 0 < Sp < 1

« Since E; grows faster on the Pb side than the proton side, Sy
rises with n as one moves from the lead to the proton side

_+_Definition of S, does not contain N ;.
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Particle Flow Algorithm

» The algorithm combines tracker, calorimeter and muon information to
assign all signals to one of 5 particles types
> All tracks and calorimeter signals are assigned to one of 5 particle types

1. Muons

2. Electrons

3. Charged Hadrons

4. Neutral Hadrons o " m , T
5. Photons o

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

+» Calorimeters signals
associated with a track ,
are removed and the ( i
energy is estimated
from the track
momentum

% Calorimeter energy is
only used for the
neutral hadrons and "5
photons

4

Electromagnetic
)i]l Calorimeter
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Systematic Uncertainties

« Data/MC discrepancies for spectra and particle mix 2.7%

 Different ways of handling the noise 1.7%
* Energy scale of the calorimeters 1.0%
* Forward-Backward Asymmetry 2.4%
* Residual pileup in the sample <0.4%

Most of these are highly correlated between different
centralities and so largely cancel in Sy the ratio of
peripheral to central.
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Results: Minimum bias dE;/dn

Peak dE;/dn = 23 GeV
implies an energy
density about 5/9 that of
central PbPb.

Peak is shifted about
one unit back from the
nucleon-nucleon center
of mass.

EPOS-LHC is close to
data but HIJING is
peaked further back

CMs/|

Nen==.10.45

25 _|_ T 11 T T T T | I T | T T T 11 _I_
20 |- |

3 15[
e I |
“,ﬂ% - CMS pPb s, =5.02 TeV .
—|Z 10 Preliminary —
| — Minimum bias data i
5 — EPOS-LHC _
- — HUING ]
O _l 1 1 1 | | 11 1 | 11 1 | 11 1 | 11 1 | 1 1 1 | |_
-3 -2 -1 0 1 2 3

M

' QI




Comparison to lower energy data
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E; builds up faster on
Pb side and peak moves
backward.

For the N, definition
of centrality dE./dn for
central events is higher
at n = 0 due to the auto-
correlation.
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dE./dn vs. n
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Spc for three centrality definitions
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Spcrises with n since centrality dependence is stronger on the lead side

Centrality definition effects the shape of S,. over a wide n range
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Results: Sp for data & MC

Centrality definition

effects the shape of S,

over a wide n range
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Spc(30-40%) compared to EPOS and HIJING
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Spc

Spc compared to MC for different N
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Conclusions

1) In min bias pPb, dE;/dn reachs 23

GeV (2/N,q) dE;/dn = 5.8 GeV.

2) For central pPb (1/N) dE{/dn ~ 60
GeV, which implies an energy density of
at least 6 GeV/fm3.

3) n dependence of E; production
depends upon centrality. Defining
centrality within a given n region
produces long range auto-correlations.
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Longitudinal slice through CMS
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