Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

Quark Matter 2015
Kobe, Japan
On behalf of the CMS experiment at the LHC
Observation of Dijet Asymmetry in PbPb

\[A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \]

- Modification observed of \(A_J \) in central PbPb
- Where does the momentum go? (Far from the cone)
- To study: characterize missing \(p_T \) incrementally in \(\eta-\phi \)
Samples and Selection

- **pp**: 5.3 pb\(^{-1}\) at 2.76 TeV
- Single Jet 80 GeV Trigger
 - Fully efficient at 120 GeV

- **PbPb**: 166 µb\(^{-1}\) at 2.76 TeV
- Single Jet 80 GeV Trigger
 - Fully efficient at 120 GeV

Dijet selection:
- \(p_T^{1} > 120\) GeV
- \(p_T^{2} > 50\) GeV
- \(|\eta^{1}|, |\eta^{2}| < 1.6 (0.6)\)
- \(\Delta\phi^{1,2} > 5\pi/6\)

Track Selection:
- \(p_T > 0.5\) GeV
- \(|\eta| < 2.4\)

anti-\(k_t\) calorimeter jets (See backup slide 21)

Corrected for efficiency/fake rate (See backup slides 20,22)
Analysis: The Dijet Axis

\[\phi_{\text{dijet}} = \frac{\phi_1 + (\pi - \phi_2)}{2} \]

Flip subleading jet and bisect axes

\[\Delta = \sqrt{(\eta_{\text{trk}} - \eta_{\text{jet}})^2 + (\phi_{\text{trk}} - \phi_{\text{jet}})^2} \]
Analysis: Binning Tracks by Δ

![Graph showing binning tracks by Δ](image)

- **Leading** Hemisphere
- **Subleading** Hemisphere

$\langle p_T^\parallel \rangle = -c_{\text{trk}} \times p_{T,\text{trk}} \times \cos(\phi_{\text{trk}} - \phi_{\text{dijet}})$

- Leading side
- Track here contributes to Leading side

CMS (2.76 TeV)

- 5.3 pb
- < 0.22
Analysis: Binning Tracks by Δ

First bin Δ

$$\Delta = \sqrt{(\eta_{trk} - \eta_{jet})^2 + (\phi_{trk} - \phi_{jet})^2}$$
Analysis: Binning Tracks by Δ

$\Delta = \sqrt{(\eta_{trk} - \eta_{jet})^2 + (\phi_{trk} - \phi_{jet})^2}$

Increasing $\Delta \rightarrow$ Move away from leading and subleading jets

Second bin Δ

Subleading

Leading
Analysis: Binning Tracks by Δ

\[\Delta = \sqrt{(\eta_{\text{trk}} - \eta_{\text{jet}})^2 + (\phi_{\text{trk}} - \phi_{\text{jet}})^2} \]

Third bin Δ

Subleading

Leading

Annuli eventually cover entire event
Missing P_T vs. Δ with $R = 0.3$ (All A_J)

- Asymmetry is balanced in central PbPb by low p_T particles through large angles
- Characterized finely in Δ increments of 0.2
Missing P_T and Jet Radius

- Jet shape differences in Gen. PYTHIA for different R

- Shifting third jet position in Gen. PYTHIA relative to subleading jet
Multiple R Missing P_T vs. Δ

CMS

A_J Inclusive

- **$\langle P_T^{\parallel} \rangle$**
- **$\langle P_T^{\perp} \rangle$**

pp

$R = 0.2$

$5.3 \text{ pb}^{-1} (2.76 \text{ TeV})$

$PbPb$ (0-30%)

$R = 0.2$

$166 \mu\text{b}^{-1} (2.76 \text{ TeV})$

$PbPb - pp$

$R = 0.2$

CMS-HIN-14-010-PUB

Christopher McGinn
A_{J} Inclusive

<table>
<thead>
<tr>
<th></th>
<th>pp R = 0.2</th>
<th>pp R = 0.3</th>
<th>pp R = 0.4</th>
<th>pp R = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zoom of Top Panels

- **pp (0-30%)**
- **PbPb - pp**

Zoom on pp and PbPb Distributions (I)

CMS Inclusive A_J Jet; 0-30% $p_{T,1} > 120; p_{T,2} > 50$ GeV $l_1 l_2 < 0.6; \Delta \phi_{1,2} > \pi/6$

<table>
<thead>
<tr>
<th></th>
<th>pp R = 0.2</th>
<th>pp R = 0.3</th>
<th>pp R = 0.4</th>
<th>pp R = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbPb R = 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMS-HIN-14-010-PUB

Christopher McGinn
Zoom on pp and PbPb Distributions (II)

AJ Inclusive

- Subleading side peak shifts outward in Δ from 0.2->0.5
- Third jet possible position pushed out with R increase
pp and PbPb Cumulative Curves (I)

A_J Inclusive

pp

PbPb (0-30%)

PbPb - pp

Compare Curves

- **CMS**
- **A_J Inclusive**
- **anti-k_t Jet; 0-30%**
- **p_{T,1} > 120; p_{T,2} > 50 GeV**
- **ln|t_1|, ln|t_2| < 0.6; Δφ_{1,2} > 5π/6**

CMS-HIN-14-010-PUB

pp R = 0.2

pp R = 0.3

pp R = 0.4

pp R = 0.5

PbPb R = 0.2

PbPb R = 0.3

PbPb R = 0.4

PbPb R = 0.5

PbPb - pp R = 0.2

PbPb - pp R = 0.3

PbPb - pp R = 0.4

PbPb - pp R = 0.5

Christopher McGinn
pp and PbPb Cumulative Curves (II)

- Curve difference between PbPb and pp primarily in first bin Δ
- For all R, curves very similar between PbPb and pp with $\Delta > 0.2$
 - Total missing p_T variation with R parameter in pp matched by PbPb
- Constituent composition of missing p_T differs between systems
Difference of PbPb and pp (I)

A_J Inclusive

pp

PbPb (0-30%)

PbPb - pp

Zoom —— of Difference

CMS-HIN-14-010-PUB
• High p_T change in first bin Δ from $R=0.2 \rightarrow 0.5$ within systematic
• Low p_T excess increases in both magnitude and angle with $R=0.2 \rightarrow 0.5$
 • Final “catch-all” bin increase suggests longer tail
Summary and the Future

- Missing p_T finely characterized through large angles Δ
 - Different dijet configurations were sampled by R variation
- Cumulative curves similar to first order for all jet R
 - Modification primarily of constituents carrying momentum
- Increased statistics of Run2 -> precise mapping for models
Backup
Impact of Tracking Cuts on Missing P_T

 CMS Preliminary

Simulation

no p_T or η cut

$|\eta|<2.4$

$p_T>0.5$ GeV/c

$|\eta|<2.5$, $p_T>0.5$ GeV/c

$\Delta\phi>5\pi/6$, $|\eta_1|,|\eta_2|<1.6$

CMS-HIN-14-010-PAS

$\langle p_T^\parallel\rangle$ (GeV/c)

A_J

PYTHIA

Generator-level $R = 0.3$

Christopher McGinn
Jet Reconstruction with HF/Voronoi Algorithm

- **UE at mid-\(\eta\) mapped by energy deposition at forward-\(\eta\)**
- **Equalization removes negative energy towers**
 - Shifted from surrounding positive energy towers
- **An energy correction based on fragmentation is applied to minimize bias from non-linear calorimeter response**
 - Applied to pp and PbPb
• Define tracking correction on track-by-track basis as:

\[c_{\text{trk}} = \frac{(1 - \text{misreconstruction}) \times (1 - \text{secondary-particle})}{(\text{efficiency}) \times (1 + \text{multiple-reconstruction})} \]

• Correct for efficiency/fake rate (+ secondary/multiple reco. in pp)
• Iterative tracking corrections in \(p_T \), \(\phi \), \(\eta \), centrality, and minimum jet distance
Summary of Systematics

\(R = 0.2/0.4/0.5 \)

<table>
<thead>
<tr>
<th>(\Delta)</th>
<th>(R = 0.2)</th>
<th>(R = 0.4)</th>
<th>(R = 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet reconstruction</td>
<td>< 0.2 0.2–2.0</td>
<td>< 0.2 0.2–2.0</td>
<td>< 0.2 0.2–2.0</td>
</tr>
<tr>
<td>Data/MC differences for JES</td>
<td>1 0.1–0.4</td>
<td>1 0.1–0.5</td>
<td>1 0.1–0.7</td>
</tr>
<tr>
<td>Fragmentation dependent JES</td>
<td>2 0.1–0.5</td>
<td>2 0.1–0.4</td>
<td>2 0.1–0.3</td>
</tr>
<tr>
<td>Track corrections</td>
<td>1 0.1–0.4</td>
<td>1 0.1–0.3</td>
<td>1 0.1–0.3</td>
</tr>
<tr>
<td>Data/MC differences for tracking</td>
<td>2 0.2–0.7</td>
<td>2 0.1–1.1</td>
<td>2 0.1–1.1</td>
</tr>
<tr>
<td>Total</td>
<td>3 0.2–0.9</td>
<td>3 0.3–1.1</td>
<td>3 0.2–1.1</td>
</tr>
</tbody>
</table>
3rd Jet Position in Gen. PYTHIA

Gen. PYTHIA

$p_{T,3} > 30 \text{GeV/c}$

$\Delta_{2,3}$

Event Fraction

$R=0.2$

$R=0.3$

$R=0.4$

$R=0.5$
Gen. PYTHIA Jet Shapes

$p_{T,1}>120, p_{T,2}>50$ GeV/c

$|\eta_1|,|\eta_2|<1.6$

$\Delta\phi>5\pi/6, p_T^{\text{particle}}>0.5$ GeV/c

leading jet
Missing \(P_T \) vs. \(\Delta \) with \(R = 0.3 \) (\(A_J < 0.22 \))

Scale Change

(Decrease)

\[\Delta \]

\[T \]

\[\Delta \]

\[0.5 - 1.0 \]

\[1.0 - 2.0 \]

\[2.0 - 4.0 \]

\[4.0 - 8.0 \]

\[8.0 - 300.0 \]

\[h_{\text{trk}} | < 2.4 \]

\[h_{l,1}, h_{l,2} | < 0.6; \Delta \phi_{l,2} > 5\pi/6 \]

\[P_T,1 > 120; P_T,2 > 50 \text{ GeV} \]

CMS

\[\text{pp} \]

\[\text{PbPb 30-100\%} \]

\[\text{PbPb 0-30\%} \]

\[\text{CMS-HIN-14-010-PUB} \]
Missing p_T vs. Δ with $R = 0.3$ ($A_J > 0.22$)

- Low p_T particles enhanced by cut on $A_J > 0.22$
- Cumulative curves track despite scale change
Missing P_T vs. A_J with $R = 0.3$
• Multiplicity excess towards subleading side shows centrality and A_J dependence
Multiple R Missing P_T vs. Δ ($A_J > 0.22$)

$A_J > 0.22$

CMS

$\langle |p_T^{||} - p_T^\Delta| \rangle$ [GeV]

- $0.5-1.0$
- $1.0-2.0$
- $2.0-4.0$
- $4.0-8.0$
- $8.0-300.0$

$|\ln|l_1l_2| < 2.4; \Delta \phi > 5\pi/6$

Anti-k_t, Jet; 0-30%

$P_{T,1} > 120; P_{T,2} > 50$ GeV

CMS-HIN-14-010-PUB

CMS
Multiple R Missing P_T vs. Δ ($A_J > 0.22$)

$A_J > 0.22$

pp →

PbPb (0-30%)

PbPb - pp →

CMS-HIN-14-010-PUB
Multiple R Missing P_T vs. A_J

CMS

anti-k, Jet; 0-10% \[p_{T,1} > 120; p_{T,2} > 50 \text{ GeV} \]
\[\eta_{1,2} < 1.6; \Delta \phi_{1,2} > 5\pi/6 \]

\[\langle p_T^{\perp} \rangle_{\text{trk}} \text{ [GeV]} \]

\[\langle p_T^{\perp} \rangle_{\text{trk}} \text{ [GeV]} \]

\[\eta \mid \eta < 2.4 \]

\[\mid \mid \]
dN/dp_T for all R

- Potential R dependence in low p_T contribution (0.5-1.0 GeV)
- R = 0.2 -> R = 0.5 difference slightly greater than summed statistical and systematic error