Prospects for the dense baryonic matter research at

V.Kekelidze, A.Kovalenko, R.Lednicky, V.Matveev, I.Meshkov, A.Sorin, G.Trubnikov, Joint Institute for Nuclear Research, Dubna

NICA (Nuclotron based Ion Colider fAcility)

- the flagship project in HEP of Joint Institute for Nuclear Research (JINR)

Main targets of the NICA project:

- study of hot and dense baryonic matter
- investigation of nucleon spin structure, polarization phenomena
- development of accelerator facility

for HEP @ JINR providing intensive beams of relativistic ions from p to Au

polarized protons and deuterons with max energy up to

 $\sqrt{S_{NN}} = 11 \text{ GeV } (Au^{79+}) \text{ and } = 27 \text{ GeV } (p)$

Synchrotron Nuclotron is in operation since 1993

it is based on the superconducting fast cycling magnets developed in Dubna

Nuclotron provides accelerated proton and ion beams (up to Xe^{42+} , A=124) with energies up to 6 AGeV (Z/A = 1/2)

existing facility

existing facility to be constructed

existing facility

to be constructed

CPC Tracker / ZDC /

existing facility

to be constructed

CPC Tracker / ZDC /

existing facility

to be constructed

NICA collider major parameters

Ring circumference, m	503.04		
heavy ions			
β, m	0.35		
energy range for Au ⁷⁹⁺ : √S _{NN} , GeV	4 - 11		
r.m.s. ∆p/p, 10 ⁻³	1.6		
peak Luminosity for Au⁷⁹⁺ , cm ⁻² s ⁻¹	1x10 ²⁷		
polarized particles			
max. energy for polarized p , Gev	27		
peak Luminosity for p , cm ⁻² s ⁻¹	1x10 ³²		

Physics objectives

11

QCD matter at NICA

- QCD Critical Point event-by-event fluctuations & correlations;
- Strangeness in nuclear matter hypernuclei
 September 29, 2015
 V.Kekelidze, QM-2015, Kobe

at high $\rho_{\rm B}$ - enhanced strangeness production;

Present and future HI collider experiments

Present and future HI experiments/machines

NICA White Paper – International Effort

Draft v 8.03 January 24, 2013

> SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

Statistics of White Paper Contributions

111 *contributions:*

188 authors from 70 centers in 24 countries

Indicates wide international interest to the physics at MPD & BM@N

September 29, 2015

V.Kekelidze, QM-2015, Kobe

3 detectors

Baryonic Matter at Nuclotron (BM@N)

the fixed target experiment at the Nuclotron

Stage I

2017

MultiPurpose Detector (MPD)

at the Collider

Stage I

2019

SPD (Spin Physics Detector) at the Collider

project is under preparation

Experiments at NICA:

MultiPurpose Detector (MPD)

MPD detector for Heavy-Ion Collisions @ NICA

V.Kekelidze, QM-2015, Kobe

TPC- technical project, preparation for fabrication

Dia. =3000 mm, L = 3400 mm, FEE = 120~000 ch, $\delta p/p < 2\%$

FEC-64 prototype (ALTERA FPGA, ALTRO, PASA chips)

Cylinder C2, preparation for vacuum tests

Time of Flight system (TOF)

Fast Forward Detector (FFD):

production stage

Provides: T0 for TOF,
beam adjustment &
collision L0-trigger

mRPC – TDR has been prepared, ready for mass production

Zhu Weipinga, Wang Yi, Feng Shengqin, Wang Jingbo, Huang Xinjie, Shi Li, V. Babkin, V. Golovatyuk, M. Rumiantcev, G. Eppley, T. Nussbaum, **NIM A 735, 277–282, 2014**

Calorimetry

ECAL – TDR - in preparation

 $L \sim 35$ cm ($\sim 14 X_0$), Pb+Scint. (4x4 cm²) read-out: WLS fibers + MAPD

Energy resolution 2.5% / √E

Zero Degree Calorimeter (ZDC):

TDR stage

ZDC coverage: 3.2<|η|< 4.8

Pb-scintillator sampling (5 λ)
Read-out: fibers +
AvalanchePD

beams at DESY (December'13)

MPD (I-stage) detector status

1. Magnet – survey for producers

2. Integration — project in preparation

3. ECAL – TDR in preparation

4. ZDC – TDR close to completion

5. TOF — TDR close to completion

6. FFD — TDR close to completion

7. TPC – TDR close to completion:

- assembly area preparations
- fabrication of basic elements
- readout chambers production + R&D (alternative)
- ALTRO-based Front-End card prototype

- preproduction stage

MPD I stage

feasibility study

MPD simulation framework

- ✓ Software repositories
- ✓ Software tests
- √ Forum
- ✓ Information, etc.

Event generators

- **✓** *UrQMD 2.3*
- ✓ LA QGSM
- ✓ SHIELD on fly
- **✓** PHSD
- ✓ UrQMD 3.4
- √ 3FD + particlization

- inherits basic properties from FairRoot (developed at GSI), C++ classes;
- extended set of event generators for heavy ion collisions;
- detector composition and geometry; particle propagation by GEANT3/4;
- advanced detector response functions, realistic tracking and PID included.

MPD tracking performance:

Fig.1: Track reconstruction efficiency: low acceptance down to 100 MeV/c;

Fig.2: Momentum resolution: $\Delta p/p < 2\%$ @ $p_T < 1.5$ GeV/c

Fig.3: Primary vertex resolution: $\sigma_x \& \sigma_z < 0.15 \text{ mm in central collisions}$ (track multiplicity in TPC > 500)

MPD performance: hyperons

Production of multi-strange hyperons to study the properties of the strongly interacting system and signal for QGP

- Central Au+Au @ 9A GeV (UrQMD), TPC+TOF barrel
- Realistic tracking and PID, secondary vertex reconstruction

Yields for 10 weeks of running

Particle	Λ	$ar{\Lambda}$	Ξ-	壹+	Ω-	$\bar{\Omega}^+$
Expected yield	$5.8 \cdot 10^9$	$7.3 \cdot 10^7$	$2.9 \cdot 10^7$	$1.6 \cdot 10^6$	$1.4 \cdot 10^{6}$	$2.9 \cdot 10^5$

MPD performance: hyperon flow

 $\Lambda + \Lambda$

0.10

0.05

Momentum anisotropy (elliptic flow) originates from initial spatial anisotropy. V2 depends on matter properties and EOS

- Min. bias Au+Au @ 11A GeV (UrQMD), TPC+TOF barrel
- Realistic tracking & PID, secondary vertex reconstruction
- Event plane from TPC tracks

MPD performance: ϕ (1020)

Motivation:

- * The lightest bound state of hidden strangeness
- * Low cross-section in nuclear matter and early freeze-out

Data set and analysis

- Central Au+Au collisions, at $\sqrt{s_{NN}} = 11$ GeV (UrQMD)
- Channel of decay: $\phi \rightarrow K^+K^-$, realistic tracking and PID (TOF + dE/dx)

Measured values:

Width = 4.96 ± 0.25 (MeV/c²) $M_{inv} = 1019.03 \pm 0.12$ (MeV/c²) close to ones generated (PDG)

MPD performance for dileptons

Good probes to indicate medium modifications of spectral functions due to chiral symmetry restoration in A+A collisions; effect is proportional to baryon density

Yields, central Au+Au st $\sqrt{s_{NN}}$ = 8.8 GeV/u

magan	Yields		Viold/1 w	
meson	4π	y=0	Yield/1 w	
ρ	31	17	7 · 10 ⁴	
ω	20	11	7 · 10 ⁴	
φ	2.6	1.2	1.7 · 10 ⁴	

Experiments at NICA: Baryonic Matter at Nuclotron (BM@N)

at the Nuclotron extracted beams

Nuclotron Beams

Parameter	Project (2017)		
Magnetic field, T	2.0 (Bρ = 42.8 T·m)		
Field ramp, T/s	1.0		
Repetition period, s	5.0		
	Energy, GeV/u	lons/ cycle	
Light ions ⇒ d	7.0	5·10 ¹⁰	
Heavy ions	With KRION-6T & Booster		
⁴⁰ Ar ¹⁸ +	5.9	2·10 ¹⁰	
⁵⁶ Fe ²⁶⁺	6.4	1·10 ¹⁰	
¹²⁴ Xe ^{48/42+}	5.0	2·10 ⁹	
¹⁹⁷ Au ⁷⁹⁺	5.5	2·10 ⁹	
Polarized beams	With SPI		
р↑	12.9	1·10 ¹⁰ *)	
d↑	6.6	1·10 ¹⁰	

*) With the Siberian snake

Nuclotron to BM@N beam line

BM@N (Baryonic Matter at Nuclotron): the 1st stage

Expression of interest from scientists:

IN, SINP MSU, IHEP + S-Ptr Univ. (RF); GSI, Frankfurt U., Gissen U. (Germany):

+ CBM-MPD IT-Consortium,

Physics:

- ✓ hyperon production
- ✓ hadron femtoscopy
- ✓ in-medium effects for strange

& vector mesons

✓ electromagnetic probes (optional)

GEM tracker (12 planes)

Phase space / acceptance to primary p

Momentum and vertex resolutions

0.5

90 degree

2.5

45 degree

Rapidity

GEM tracker: Λ^0 , Ξ^- , ${}^3H_{\Lambda}$ reconstruction

12 planes of GEM tracker

 E_{kin} = 4.5A GeV, 2 × 10⁶ events; UrQMD & DCM-QGSM, Au+Au, 120 Invariant mass: $\Lambda \rightarrow p + \pi$ Entries / 2 MeV/c² Invariant mass: $\Xi \rightarrow \Lambda + \pi$ Entries / 2 MeV/c² 4000 100 S/B = 3.63000 $S/\sqrt{S+B} = 14.0$ 80 S/B = 3.9Peak 3221.9 $S/\sqrt{S+B} = 83.5$ Mean 1.115 Eff. = 0.8%2000 60 Eff. = 8.9%Sigma 0.0023 Peak 77.53 40 Mean 1.321 1000 Sigma 0.0027 20 1.12 1.1 1.14 $M_{(p+\pi^{\prime})}$, GeV/c^2 1.24 1.26 $M_{(\Lambda+\pi)}$, GeV/c^2 Invariant mass: ${}^{3}_{\wedge}H \rightarrow {}^{3}He + \pi^{-}$ 500 $\rm Entries / 2~MeV/c^2$ $\Xi^{-}\rightarrow \Pi^{-}+\Lambda^{0}\rightarrow p\Pi^{-}$ 3 He π - ^{3}H 400 $\odot \vec{\mathbf{B}}$ Peak 271.8 S/B = 1.6300 Mean 2.991 $S/\sqrt{S+B}=22.4$ Sigma 0.0025 Eff.=1.0% 200 100

2.95

2.9

3.05

 $M_{(^3He+\pi^{\cdot})}$, GeV/c^2

3

 $\pi - (K-)$

BM@N milestones

 ZDC complete configuration 	2016
• DAQ complete config.	end 2017
• GEM 8 planes	end 2017
TOF complete config.	end 2017
• GEM 12 planes	end 2018
• ST 4 planes	2019
• technical runs with d, C, Li	2015 - 2017
 physics run BM@N (I stage) with p, Xe 	<i>Nov</i> 2017
 physics run BM@N (II stage) with Au 	Feb 2019

NICA schedule

International cooperation

Concluding remarks

- NICA complex has a potential for competitive research in the fields of dense baryonic matter
- The construction of both detectors BM@N & MPD is progressing
- The international collaboration around the NICA is growing
- New partners are invited to join the BM@N & MPD

