Bulk properties of the system formed in Au+Au collisions at $\sqrt{s_{NN}} = 14.5$ GeV using the STAR detector at RHIC

Vipul Bairathi
(for the STAR Collaboration)
National Institute of Science Education and Research, India

Outline

• Introduction & Motivation
• STAR Experiment at RHIC
• Results
 • Identified particle production and freeze out parameters
 • Azimuthal anisotropy of identified hadrons
• Summary
Motivation: RHIC BES Program

Goals of RHIC beam energy scan program

✧ Search for turn-off of QGP signatures
✧ Search for the first-order phase transition
✧ Search for critical point

Freeze out in heavy-ion collisions

Chemical freeze out (T_{ch}, μ_B)
✧ Inelastic collisions among particles cease

Kinetic freeze out (T_{kin}, $<\beta>$)
✧ Elastic collisions among particles cease

Elliptic flow (v_2) of identified hadrons

New data: Au+Au $\sqrt{s_{NN}} = 14.5$ GeV
✧ Corresponding $\mu_B = 260$ MeV fills a gap in μ_B of about 100 MeV between $\sqrt{s_{NN}} = 11.5$ GeV ($\mu_B = 315$ MeV) and 19.6 GeV ($\mu_B = 205$ MeV).

Vipul Bairathi
STAR Experiment at RHIC

Large Coverage: $0 < \phi < 2\pi, \ |\eta| < 1.0$

Uniform acceptance: transverse momentum (p_T) and rapidity (y)

Excellent particle identification capabilities (TPC and TOF)

BES-I Dataset

<table>
<thead>
<tr>
<th>Year</th>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Minimum Bias Events(10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>62.4</td>
<td>67</td>
</tr>
<tr>
<td>2010</td>
<td>39</td>
<td>130</td>
</tr>
<tr>
<td>2011</td>
<td>27</td>
<td>70</td>
</tr>
<tr>
<td>2011</td>
<td>19.6</td>
<td>36</td>
</tr>
<tr>
<td>2014</td>
<td>14.5</td>
<td>20</td>
</tr>
<tr>
<td>2010</td>
<td>11.5</td>
<td>12</td>
</tr>
<tr>
<td>2010</td>
<td>7.7</td>
<td>4</td>
</tr>
</tbody>
</table>

Particle Identification

Time Projection Chamber (TPC)

\[z = \log \left(\frac{(dE/dx)_{\text{meas.}}}{(dE/dx)_{\text{theory}}} \right) \]

Time Of Flight (TOF)

\[m^2 = p^2 \left(\frac{c^2 t^2}{L^2} - 1 \right) \]

\(p = \) momentum
\(t = \) time of flight
\(L = \) path length

\(\sqrt{s_{\text{NN}}} = 14.5 \text{ GeV} \)

Au + Au

H. Bichsel, NIM A. 562 (2006) 154

Vipul Bairathi
Identified particle production and freeze out properties

See also
- Talk of James Brandenburg
 Heavy flavors and Strangeness
 Monday, 11.15-11.35
Transverse Momentum Spectra

Au + Au $\sqrt{s_{NN}} = 14.5$ GeV

Bose-Einstein fit

- π^+
 - 40-50%
 - 50-60%
 - 60-70%
 - 70-80%

- K^+
 - 3.0x0-5%
 - 2.0x5-10%
 - 1.5x10-20%
 - 1.2x20-30%
 - 30-40%

- Σ^-
 - 0-5%
 - 5-10% ($x10^{-2}$)
 - 10-20% ($x10^{-3}$)
 - 20-30% ($x10^{-2}$)
 - 30-40% ($x10^{-3}$)
 - 40-60% ($x10^{-3}$)
 - 60-80% ($x10^{-5}$)

- Λ
 - 0-5%
 - 5-10% ($x10^{-2}$)
 - 10-20% ($x10^{-3}$)
 - 20-30% ($x10^{-3}$)
 - 30-40% ($x10^{-3}$)
 - 40-60% ($x10^{-3}$)
 - 60-80% ($x10^{-5}$)

- \bar{p}
 - 3.0x0-5%
 - 2.0x5-10%
 - 1.5x10-20%
 - 1.2x20-30%
 - 30-40%

Boltzmann fit

- π^+
 - 40-50%
 - 50-60%
 - 60-70%
 - 70-80%

- K^+
 - 3.0x0-5%
 - 2.0x5-10%
 - 1.5x10-20%
 - 1.2x20-30%
 - 30-40%

- Σ^-
 - 0-5%
 - 5-10% ($x10^{-2}$)
 - 10-20% ($x10^{-3}$)
 - 20-30% ($x10^{-2}$)
 - 30-40% ($x10^{-3}$)
 - 40-60% ($x10^{-3}$)
 - 60-80% ($x10^{-5}$)

- Λ
 - 0-5%
 - 5-10% ($x10^{-2}$)
 - 10-20% ($x10^{-3}$)
 - 20-30% ($x10^{-3}$)
 - 30-40% ($x10^{-3}$)
 - 40-60% ($x10^{-3}$)
 - 60-80% ($x10^{-5}$)

- \bar{p}
 - 3.0x0-5%
 - 2.0x5-10%
 - 1.5x10-20%
 - 1.2x20-30%
 - 30-40%

Double Exponential fit

- π^+
 - 40-50%
 - 50-60%
 - 60-70%
 - 70-80%

- K^+
 - 3.0x0-5%
 - 2.0x5-10%
 - 1.5x10-20%
 - 1.2x20-30%
 - 30-40%

- Σ^-
 - 0-5%
 - 5-10% ($x10^{-2}$)
 - 10-20% ($x10^{-3}$)
 - 20-30% ($x10^{-2}$)
 - 30-40% ($x10^{-3}$)
 - 40-60% ($x10^{-3}$)
 - 60-80% ($x10^{-5}$)

- Λ
 - 0-5%
 - 5-10% ($x10^{-2}$)
 - 10-20% ($x10^{-3}$)
 - 20-30% ($x10^{-3}$)
 - 30-40% ($x10^{-3}$)
 - 40-60% ($x10^{-3}$)
 - 60-80% ($x10^{-5}$)

- \bar{p}
 - 3.0x0-5%
 - 2.0x5-10%
 - 1.5x10-20%
 - 1.2x20-30%
 - 30-40%
New results for Au+Au, 14.5 GeV

- Particles used in fit: π, K, p, Λ, Ξ and their anti-particles.
- T_{ch} increases as collision energy increases.
- μ_B decreases with increase in collision energy.
- Centrality dependence is observed for μ_B.

Blast-Wave Fit

New results for Au+Au 14.5 GeV data

- $<\beta>$ decreases from central to peripheral collisions.
- T_{kin} increases from central to peripheral collisions.
- An anti-correlation observed between T_{kin} and $<\beta>$.

STAR, QM 2014, Darmstadt, Germany
Elliptic flow (v_2) of Identified hadrons

See also
- Talk of Liao Song, Session: Correlations and fluctuations
 Tuesday, 14.40-15.00
- Poster by Shusu Shi, Board: 0833 / 351,
 Tuesday, 16.30-18.30
Elliptic Flow (v_2)

The observed v_2 is corrected for event plane resolution.

- η-sub event plane method is used for calculation of v_2.

$$
\frac{dN}{d\phi} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \psi_{rp})) \right]
$$

$$
v_n = \langle \cos[n(\phi - \psi_{rp})] \rangle
$$

Mass ordering of v_2 is observed at low p_T for π^+, K^+, p and their antiparticles.

No mass ordering observed for K_s^0, ϕ, Λ and $\bar{\Lambda}$.

Difference between v_2 of Λ and $\bar{\Lambda}$-bar observed.
New measurement for Au+Au, 14.5 GeV data

- Mass ordering of v_2 is observed at low p_T for π^+, K^+, p and their antiparticles.
- No mass ordering observed for K_{s0}, ϕ, Λ and Λ-bar.
- Difference between v_2 of Λ and Λ-bar observed.
- Finite ϕ-meson v_2 in Au+Au at 14.5 GeV.
\(\Delta v_2 = v_2(X) - v_2(\bar{X}) \) increases with decrease in energy.

\(\Delta v_2 = v_2(X) - v_2(\bar{X}) \) relative to proton \(v_2 \) (at \(p_T = 1.5 \) GeV/c) shows a centrality dependence.

Centrality dependence

- Centrality dependence of v_2 is observed.
- Baryon-meson separation of v_2 is more prominent for particles compared to anti-particles at transverse kinetic energy $(m_T - m_0) > 1$ GeV/c2

Fit function:

$$f v_2(n) = \frac{an}{1 + e^{-((m_T-m_0)/n-b)/c}} - dn$$

n = 3 for baryons, 2 for mesons
(A) New Measurements:
- Transverse momentum spectra and elliptic flow v_2 of identified hadrons in Au+Au collisions at 14.5 GeV were presented.
- The results for Au+Au collisions at 14.5 GeV are consistent with the trends established by the other BES energies.

(B) Observations:

Chemical Freeze-out:
- T_{ch} increases as collision energy increases.
- μ_B decreases as collision energy increases.
- Centrality dependence of μ_B is observed.

Kinetic Freeze-out:
- Centrality dependence is observed for T_{kin} and $<\beta>$.
- T_{kin} and $<\beta>$ are anti-correlated.

Elliptic flow v_2:
- Low p_T mass ordering of v_2 for π^+, K^+, p and their anti-particles is observed for Au+Au at 14.5 GeV.
- Centrality dependence is observed for $v_2(p)$–$v_2(\bar{p})$ when normalized to proton v_2 for all BES energies.

Summary

<table>
<thead>
<tr>
<th>Au+Au, 14.5 GeV 0-5% Most Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{ch} (MeV)</td>
</tr>
<tr>
<td>μ_B (MeV)</td>
</tr>
<tr>
<td>T_{kin} (MeV)</td>
</tr>
<tr>
<td>$<\beta>$</td>
</tr>
</tbody>
</table>
BackUp
Chemical freeze out:
Inelastic collisions among the particles ceases and particle yields get fixed.

THERMUS: Statistical thermal model
Grand Canonical Ensemble: Quantum numbers (B, S, Q) conserved on average

\[n_i = \frac{Tm_i^2 g_i}{2\pi^2} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\frac{k\mu_i}{T}} \right) K_2 \left(\frac{km_i}{T} \right) \]

Thermodynamics quantities extracted:
Chemical freeze out temperature \(T_{ch} \)
Baryon chemical potential \(\mu_B \)
Kinetic freeze out:
Elastic collisions among the particles stop and the momentum distribution gets fixed

Blast-Wave (BW) Model:

\[
\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\text{kin}}} \right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{\text{kin}}} \right)
\]

\(I_0, K_1 \): Modified Bessel functions
\(\rho(r) = \tanh^{-1} b \), \(b \): transverse radial flow velocity,
\(r/R \): relative radial position; \(R \): radius of fireball
\(T_{\text{kin}} \): Kinetic freeze-out temperature

- Hydrodynamic based model
- Assumes local thermalization of particles at a kinetic freeze-out temperature and moving with a common radial flow velocity

Comparison with BES energies