Jet-induced medium excitation in heavy-ion collisions

Wei Chen

Central China Normal University
Institute Of Particle Physics

Collaborators: Yayun He, Horst Stoecker, Longgang Pang, Tan Luo, Enke Wang, Xin-Nian Wang
Outline

- Introduction

- Linear Boltzmann jet transport coupled with 3+1D hydrodynamic model

- Gamma-trigger jet propagation

- Results about jet suppression + jet-induced medium excitation

- Summary and outlook
1. jet suppression in PbPb
2. significant energy flow out of cone
3. energy flow is carried mostly by low transverse momentum hadrons at larger angle
Linear Boltzmann Jet Transport model (LBT)

1. study: jet propagation in QGP medium.
2. keep track of both jet shower parton and thermal recoiled parton.
3. elastic and inelastic process
4. neglect interaction between jet shower partons and recoiled partons.

Hanlin Li, Fuming Liu, Guo-liang Ma, Xin-Nian Wang, Yan Zhu Phys. Rev. Lett. 106, 012301

Boltzmann equation:

\[
p_1 \cdot \partial f_a(p_1) = - \int \frac{d^3p_2}{(2\pi)^3 2E_2} \int \frac{d^3p_3}{(2\pi)^3 2E_3} \int \frac{d^3p_4}{(2\pi)^3 2E_4} \sum_{b(c,d)} [f_a(p_1)f_b(p_2) - f_c(p_3)f_d(p_4)] |M_{ab\rightarrow cd}|^2 \\
\times S_2(s, t, u) (2\pi)^4 \delta^4(p_1 + p_2 - p_3 - p_4),
\]

+ radiation
CoLBT_Hydro model
(Linear Boltzmann jet transport coupled with 3+1D hydrodynamical model)

Motivation:
linear approximation: jet-induced medium excitation is much smaller than thermal background \(\delta f \ll f \)
LBT model is not valid because of a lot of soft partons produced.

simulate both the transport of jet shower partons and jet-induced medium excitation.

Basic Idea:
The energy-momentum conservation equations with source term can be expressed as:
\[
\partial_\mu T^{\mu \nu} = j^\nu
\]
The source term can be expressed as:
\[
j^\nu = \sum_{i=1}^{n} \frac{(dP^\nu_i)_{\text{soft}}}{d\tau} \delta^3(\vec{X} - \vec{X}_i)
\]
Soft parton: parton with energy below Ecut in the comoving frame

Similar work: Yasuki TachiBana's talk in first section.
CoLBT_Hydro model
(Linear Boltzmann jet transport coupled with 3+1D hydrodynamical model)

Initial condition:
- **Event by event**
 jet shower partons + 3+1D hydrodynamic model with fluctuating initial condition from AMPT model

Evolution:
- **Time step by step**
at any given time, hydro provide bulk information. soft parton from LBT as source term induce medium excitation and update bulk information

Hadronization:
Using recombination model from Texas A-M group

Time consumption: one event, more than 7 hours in CPU, less than 7 minutes in GPU
Jet propagation and jet-induced medium excitation
Gamma-jet propagation in CoLBT_Hydro model

1. Gamma-jet:
 - a clean, unbiased sample
 - Gamma does not interact with medium and provide initial information about jet

2. Gamma jet initial configuration comes from Hijing

3. Initial distribution of gamma_jet is from binary collision probability.
Hadron spectrum from jet-induced medium excitation

\[\Delta \Phi = \Phi - \Phi_\gamma \]

\[\Delta \Phi : \text{angle between hadron and gamma} \]

\[
\frac{dN}{d\Phi dP_T d\eta} = \frac{dN}{d\Phi dP_T d\eta_{\gamma jet}} - \frac{dN}{d\Phi dP_T d\eta_{no-\gamma jet}}
\]

Using same hydro initial condition in one event

\[dN/d\Phi_{no-\gamma jet} \approx 2200 \]

1. Soft hadron spectra (pT<1 GeV) from jet-induced medium excitation

2. Hadrons from jet-induced medium excitation are in the direction of jet propagation
hadron spectrum between AA and pp

Hadron spectrum of AA contributed from: jet-induced medium + modified jet shower

1. A huge enhancement for soft hadrons not only in the direction of jet but also in the direction of gamma.
2. There is a suppression in high pt

Quark matter 2015
SEPTEMBER 27 - OCTOBER 3, 2015
Pt distribution along jet direction

1. Enhancement at low transverse momentum
2. Suppression at high pt range
Summary and Outlook

1. We use Linear Boltzmann jet transport model coupled with 3+1D hydrodynamics model to simulate both the transport of jet shower partons and jet-induced medium excitation.

2. With this coupled approach we investigate hadrons spectrum in both low and high transverse momentum region. We also study hadron-jet and gamma-hadron correlation to study the effect of jet-induced medium excitations.

A lot of work needed to do...
1. jet reconstruction
2. different centrality
3. different jet type
Backup
Hadron spectrum from LBT part

Jet parton showers from Hijing.

CoLBT_hydro

Final partons

Recombination

Hadrons