PHENIX results on flow observables in asymmetric Cu+Au collisions

Brennan Schaefer for the PHENIX Collaboration
Vanderbilt University
28 Oct. 2015
contents

• introduction and motivation
• detector details
• directed, elliptic, and triangular flow
 - charged particle
 - identified hadron
• viscous hydro, AMPT comparison
• conclusions
Collision Systems at BNL-RHIC

- Au+Au
- p+p
- d+Au
- Cu+Cu
- U+U
- Cu+Au
- He+Au
- p+Au
- p+Al

PHENIX data in this analysis

- Run 12 (2012)
- 200 GeV
- 5 weeks
- 7.6 B events
- $|\eta| < 0.35$
anisotropic flow harmonics – event plane method

\[
\frac{dN}{d\phi} \propto \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \psi_n)] \right)
\]

\[v_n = \left\langle \cos[n(\phi - \psi_n)] \right\rangle\]
anisotropic flow harmonics – event plane method

- reflect properties of initial state and evolution
- probe different length scales
- sensitive to EoS and η/s
tracks reconstructed with DC and matched to PC3, EMCal

PID: TOFE, TOFW

ψ₁ - Shower Maximum Detector spectator plane

ψ₂,₃ - Beam Beam Counter participant plane
\(\nu_1 \) sign conventions used

- \(\nu_1 \) is defined to be positive at positive \(\eta \) (Cu-going)
- \(x \) is positive if spectators flow outwards
- measurements use Au spectators, signs are flipped
event plane resolution

three sub-event method used to determine the resolution:

\[
\text{Res}(\Psi_n^A) = \sqrt{\frac{\langle \cos n (\Psi_n^A - \Psi_n^B) \rangle \langle \cos n (\Psi_n^A - \Psi_n^C) \rangle}{\langle \cos n (\Psi_n^B - \Psi_n^C) \rangle}}
\]

\[\Psi_1 : \text{SMDS, } \Psi_{2,3} : \text{BBCS+BBSN}\]
centrality dependence

$\mathbf{v_1}$ magnitude decreases

$\mathbf{v_2}$ magnitude increases
centrality dependence

ν_3
weak
dependence

ν_2
magnitude
increases
v_2 system size dependence

Cu+Au falls between Cu+Cu and Au+Au
v_2 (ε_2 scaled)

ε_2 scaling reorders the results by system size
$v_2 \left(\varepsilon_2 N_{\text{part}}^{1/3} \right.$ scaled $)$

universal behavior in all centralities and systems:
Cu+Cu, Cu+Au, Au+Au
for the same centrality Glauber-ε_3 is larger in the smaller system due to increased fluctuations
v_3 system size dependence

$\nu_3 \text{ Cu+Au} > \nu_3 \text{ Au+Au}$
$v_3 \ (\varepsilon_3 \text{ scaled})$

close agreement at low-intermediate p_T
within systematics at high p_T
$v_3 \ (\varepsilon_3 N_{\text{part}}^{1/3 \text{ scaled}})$

agreement within systematics at all p_T
identified particle v_2

mass ordering at low p_T for v_2
identified particle $v_{1,3}$

mass ordering at low p_T for $v_{1,3}$
comparison to viscous hydro

\[|\eta| < 0.35 \quad \text{and} \quad |\eta| < 1.0 \]

indirect comparison shows qualitative agreement, assuming spectators curl outward from the z-vertex
comparison to viscous hydro

v_2

v_3
comparison to AMPT

V_2

V_3
conclusions

- in Cu+Au the magnitude of v_1 decreases from central to peripheral, opposite to v_2 behavior
- $v_{2,3}$ in different systems scale with $\varepsilon_{2,3} N_{\text{part}}^{1/3}$
- mass ordering is seen for all harmonics
- $v_{2,3}$ is consistent with viscous hydro $\eta/s = (1-2)/4\pi$
- AMPT with $\sigma = 3.0$ mb describes $v_{2,3}$ for $p_T < 2$ GeV
Number of participant and the participant eccentricity (ε_2, ε_3) from Glauber Monte-Carlo calculations for Au+Au, Cu+Cu, and Cu+Au collisions at 200 GeV

<table>
<thead>
<tr>
<th>centrality</th>
<th>Au+Au 200 GeV</th>
<th>Cu+Cu 200 GeV</th>
<th>Cu+Au 200 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_{part}</td>
<td>ε_2</td>
<td>ε_3</td>
</tr>
<tr>
<td>0%–10%</td>
<td>325.2</td>
<td>0.103</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>±3.3</td>
<td>±0.003</td>
<td>±0.0018</td>
</tr>
<tr>
<td>10%–20%</td>
<td>234.6</td>
<td>0.200</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>±4.7</td>
<td>±0.005</td>
<td>±0.0035</td>
</tr>
<tr>
<td>20%–30%</td>
<td>166.6</td>
<td>0.284</td>
<td>0.156</td>
</tr>
<tr>
<td></td>
<td>±5.4</td>
<td>±0.006</td>
<td>±0.0047</td>
</tr>
<tr>
<td>30%–40%</td>
<td>114.2</td>
<td>0.356</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>±4.4</td>
<td>±0.006</td>
<td>±0.0083</td>
</tr>
<tr>
<td>40%–50%</td>
<td>74.4</td>
<td>0.422</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>±3.8</td>
<td>±0.006</td>
<td>±0.0111</td>
</tr>
<tr>
<td>50%–60%</td>
<td>45.5</td>
<td>0.491</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>±3.3</td>
<td>±0.005</td>
<td>±0.0179</td>
</tr>
</tbody>
</table>
Systematic uncertainties given in percent on the v_n measurements.

<table>
<thead>
<tr>
<th>v_n</th>
<th>Uncertainty Sources</th>
<th>10%–20%</th>
<th>40%–50%</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>Event plane resolution</td>
<td>20%</td>
<td>12%</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Event plane detectors</td>
<td>3%</td>
<td>4%</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Background</td>
<td>2%</td>
<td>2%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Acceptance</td>
<td>10%</td>
<td>10%</td>
<td>C</td>
</tr>
<tr>
<td>v_2</td>
<td>Event plane resolution</td>
<td>2%</td>
<td>2%</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Event plane detectors</td>
<td>3%</td>
<td>4%</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Background</td>
<td>2%</td>
<td>2%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Acceptance</td>
<td>8%</td>
<td>3%</td>
<td>C</td>
</tr>
<tr>
<td>v_3</td>
<td>Event plane resolution</td>
<td>2%</td>
<td>2%</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Event plane detectors</td>
<td>3%</td>
<td>7%</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Background</td>
<td>2%</td>
<td>2%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Acceptance</td>
<td>2%</td>
<td>10%</td>
<td>C</td>
</tr>
</tbody>
</table>
Systematic uncertainties for particle identification

<table>
<thead>
<tr>
<th>species</th>
<th>$p_T \leq 2\text{GeV}/c$</th>
<th>$p_T \geq 2\text{GeV}/c$</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>pion</td>
<td>3%</td>
<td>5%</td>
<td>A</td>
</tr>
<tr>
<td>kaon</td>
<td>3%</td>
<td>10%</td>
<td>A</td>
</tr>
<tr>
<td>proton</td>
<td>3%</td>
<td>5%</td>
<td>A</td>
</tr>
</tbody>
</table>