

Consistency of Perfect Fluidity and Jet Quenching in semi-Quark-Gluon-Monopole Plasmas (sQGMP)

Jiechen Xu Columbia University

References: JX, Jinfeng Liao, Miklos Gyulassy, arXiv:1411.3673, arXiv:1508.00552

Quark Matter 2015

-- The XXV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

September 29, 2015 @ Kobe, Japan

Outline

- Inconsistency between soft bulk & hard jet transport properties
- ✤ Nonperturbative medium near T_c
- The CUJET3.0 jet energy loss model: pQCD/DGLV + sQGMP (semi-QGP + magnetic monopoles)
- Simultaneous description of high-p_T R_{AA} and v₂ at RHIC and LHC; connecting qhat/T³(T) and η/s(T)
- Probe deconfinement using jet quenching observables?
- ✤ Jet quenching in p+A?
- Summary

Bulk perfect fluidity vs pQCD jet quenching

Bulk perfect fluidity and jet quenching inconsistent? *

0.071

 $\overline{\alpha_s^2 \log(1/\alpha_s)}$

Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

TAMU elastic

14 16 ρ_{_} (GeV/c)

Centrality 30-50%

10

12

Jet quenching parameter and η/s

• Kinetic theory estimate of η/s

$$\eta/s = \frac{1}{s} \frac{4}{15} \sum_{a} \rho_a \langle p \rangle_a \lambda_a^{tr}$$

$$= \frac{4T}{5s} \sum_{a} \rho_a \left(\sum_{b} \rho_b \int_0^{\langle \mathcal{S}_{ab} \rangle/2} dq^2 \frac{4q^2}{\langle \mathcal{S}_{ab} \rangle} \frac{d\sigma_{ab}}{dq^2} \right)^{-1}$$

$$= \frac{18T^3}{5s} \sum_{a} \rho_a \langle \hat{q}_a (T, E = 3T) \rangle, \qquad (1)$$

Danielewicz, Gyulassy, PRD 1985 $\eta(T)/s(T)$ 10 5 2 wQGP HRG 0.5 sQGP 0.2 SYM 0.1 Tc 3 5 0 4 Hirano, Gyulassy, NPA 2006 $\left\{1.25\frac{T^3}{\hat{q}}\right\} \text{ for weak coupling,} \\ \text{for strong coupling.}$ Majumder, Muller, Wang, PRL 2007

What can be pumped out of vacuum to account for the "missing" degrees of freedom?

- What would be a lattice compatible, microscopic description of the near Tc matter?
 - > Does this help reconciling the "soft" vs "hard" transport inconsistency?

Liao-Shuryak E-M Seesaw Scenario

The semi-Quark-Gluon-Monopole Plasmas

✤ Near Tc: semi-QGP (Pisarski, Hidaka, Lin, Satow...)

Cf. Pisarski's Talk on Tue Morning

Semi-QGP suppresses color-electric DOFs as powers of Polyakov loop

$$\begin{split} L(\vec{x}) &\equiv \mathcal{P} \exp\left(ig \int_{0}^{1/T} d\tau A_{0}(\tau, \vec{x})\right) \quad \ell_{n}(Q) \equiv \langle trL^{n} \rangle / N_{c} = \sum_{a=1}^{N_{c}} e^{inQ^{a}/T} / N_{c}.\\ n_{ab}(E) &= \frac{1}{e^{(E-i(Q^{a}-Q^{b}))/T}-1} \longrightarrow \langle \sum_{ab} n_{ab} \rangle_{Q} \sim N_{c}^{2}T^{3}\ell^{2}\\ \widetilde{n}_{a}(E) &= \frac{1}{e^{(E-iQ^{a})/T}+1} \longrightarrow \langle \sum_{ab} \widetilde{n}_{a} \rangle_{Q} \sim N_{c}T^{3}\ell\\ V_{non-pert}^{glue}(q) &= \frac{4\pi^{2}}{3}T^{2}T_{deconf}^{2}\left(-\frac{c_{1}}{5}q(1-q)-c_{2}q^{2}(1-q)^{2}+\frac{c_{3}}{15}\right) \text{ arXiv:1011.3820, 1205.0137} \end{split}$$

- * "semi-QGP" + emergent chromo-magnetic monopoles = sQGMP
- Phenomenologically how can we implement such a microscopic sQGMP in a pQCD jet energy loss framework?
 - > Does this simultaneously explain data of R_{AA} and v_2 at RHIC and LHC?
 - Does this provide a quantitative connenction between the perfect fluidity of QGP and pQCD jet quenching?

CUJET3.0 = pQCD/DGLV + semi-QGP + monopoles

Lattice Constraints: Polyakov Loop, EOS, E & M Screening Masses

The CUJET3.0 implementations of the color- electric and magnetic components are well constrained by available lattice data of Polyakov loop, EOS and E & M screening Jiechen Xu, 09/29/2015 @ QM15

CUJET3.0 simultaneously describes high pT (R_{AA}+v₂)*(light+heavy)*(RHIC+LHC)

JX, J. Liao, M. Gyulassy, arXiv:1411.3673

The combined set of observables (*R_{AA}+v₂*)*(*RHIC+LHC*)*(*pion+D+B*)

are consistently accounted for in CUJET3.0 using lattice data constrained sQGMP near Tc + pQCD jet quenching

CUJET3.0's D/ π suppression ratio compared with data

The ratio of D and π,ch's RAA imposes further constraints on jet energy loss models

♦ Less than one R_{AA}^D/R_{AA}^π , ch in 10GeV<p_T<30GeV

CUJET3.0: qhat(E,T) for quark jets in sQGMP

 CUJET3.0 solution exhibits a "volcano" interpolation of qhat/T^3 between strong "AdS-like" sQGP at T=200-350MeV to more transparent "HTL-like" wQGP for T>400MeV

pQCD jet quenching + sQGMP: η/s(T)

JX, Liao, Gyulassy, arXiv:1411.3673

- CUJET3.0 provides a quantitative connection between the jet transport properties controlling the hard jet quenching observables and the bulk viscous transport properties controlling the soft "perfect fluidity" of QGP observed at RHIC and LHC.
- How to make full use of this connection?

Deconfinement: Quark number susceptibility vs Polyakov loop

JX, Liao, Gyulassy, arXiv:1508.00552

- Quark DOFs are dynamic and almost massless rather than static and massive
- Use normalized quark number susceptibility instead of Polyakov loop for the deconfinement rate of quarks near T_c

Light hadron and open heavy flavor R_{AA} with "fast deconfinement"

- µ_ЕП,µмП 3 5 1 0 2 0 T/T_c
- hadron R_{AA} at $p_T=12.5 GeV$
- The beauty R_{AA} distinguishes the different liberation schemes
- The combination of light hadron and open heavy flavor R_{AA} may be used as a measure of deconfinement

The shear viscosity with "fast deconfinement"

- The shear viscosity minimum is sensitive to how rapidly quark DOFs are deconfined
- The slope of η/s(T) is affected mainly by the temperature dependence of E and M screening masses

Jet quenching in p+A?

- Same pA Hydro from McGill group is used, cf. Shen et al. 1504.07989 & Gale's Talk on Monday
- Min. bias see mild quenching at p_T~15GeV; Central collisions see strong jet suppressions

Azimuthal anisotropy of charged hadrons in p+A

- Significant v₂ up to p_T~30GeV in central pA collisions in CUJET
- Compared with HTL QGP, in sQGMP, the monopoles contribute to a ~0.03 boost in high p_T v₂, this magnitude of enhancement is similar to the one in 20-30% AA

Summary

- Combining the pQCD jet quenching kernal and the microscopic semi-Quark-Gluon-Monopole Plasma (sQGMP) model, CUJET3.0 describes (R_{AA}+v₂) × (pion+D+B) × (RHIC+LHC) simultaneously
 - > qhat bridges the AdS/CFT limit near Tc and the HTL pQCD limit at high T
 - eta/s approaches the perfect fluid ~0.1 near Tc, and rises rapidly as T rises
- How rapidly quark DOFs are deconfined near T_c significantly affects the suppression of open heavy flavors and the shear viscosity minimum
- Non-negligible suppressions of high-p_T light hadrons in most-central pA collisions; the high-p_T v₂ enhancement from monopoles in such system is similar to that in AA

Backup

An alternative qhat measure in sQGMP

JX, Liao, Gyulassy, arXiv:1508.00552

The alternative qhat as well as the eta/s converges to the HTL limit at high temperature.

R_{AA} and v_2 in the "fast liberation" scheme

Open heavy flavor R_{AA} distinguishes the different liberation schemes

qhat and eta/s in the "fast liberation" scheme

JX, Liao, Gyulassy, arXiv:1508.00552

✤ The shear viscosity near T_c is sensitive to how fast quark DOFs are deconfined

Relativistic corrections to jet quenching from transverse flow

 Both RAA and v2 are surprisingly insensitive to the form of the relativistic flow corrections in both CUJET2.0 (pQCD+HTL) and CUJET3.0 (semi-QGP + magnetic monopoles)

Pressure Scheme (PS) vs Entropy Scheme (ES)

Convergence of the DGLV opacity series

Figure 15. Radiated gluon transverse momentum distribution for a heavy quark jet with energy E = 20 GeV traversing a brick plasma of size L = 5 fm emitting a gluon with energy $\omega = 5 \text{ GeV}$. The mass of the quark M = 4.75 GeV. The DGLV opacity series calculated up to n=1 (black), 3 (blue), 5 (green), 7 (orange), 9 (red) are shown in the figure. The opacity expansion computed up to ninth order is shown to converge to the ASW multiple soft scattering limit (maroon, dashed) for small $k_{\perp} \leq \hat{q}L \approx 1 \text{ GeV}$. At large k_{\perp} , differs from the ASW limit, DGLV has a robust Laudau tail. Other parameters used in the simulation are: $\lambda = 1.16 \text{ fm}$, $\mu = 0.5 \text{ GeV}$, $m_g = 0.356 \text{ GeV}$, T = 0.258 GeV, $n_f = 0$, $\alpha_s = 0.3$.

JX, Buzzatti, Gyulassy, JHEP 1408, 063 (2014)

CUJET: to solve the heavy quark energy loss puzzle + to explain the surprising transparency of QGP at LHC

• Path length fluctuations: $T(\tau_{max}) = T_{f}$ Multi-scale running strong coupling

High- $p_T v_2$ in the pQCD energy loss model

The 50% underestimation of v2 can be accounted for if the average coupling strength is tuned up by 10% from in- to out-of-reaction plane paths

Open charm's and beauty's high $p_T R_{AA}$ and v_2 at RHIC and LHC (20-30% centrality) from CUJET3.0

Jiechen Xu, 09/29/2015 @ QM15

CUJET3.0: HF Decay Electron RAA & v2

Path length dependence of jet energy loss in sQGMP

Monopoles bring non-perturbative effects into the pQCD energy loss theory

Path length dependence of heavy quark energy loss in sQGMP

Jiechen Xu, 09/29/2015 @ QM15

Near-Tc properties of sQGMP are special!

CUJET3.0 = [pQCD] + [semi-QGP] + [magnetic monopoles] bridges the "soft" bulk perfect fluidity and the "hard" jet quenching (η /s~T³/qhat) BES@RHIC and LHC are both essential to constrain and map out

the strongly non-conformal QCD confinement transition physics