A study of vorticity formation in high energy nuclear collisions

(F. Becattini1 2 G. Inghirami3 4 V. Rolando5 6 A. Beraudo7 L. Del Zanna1 8 A. De Pace7 M. Nardi7 G. Pagliara5 6 V. Chandra9

1 Dipartimento di Fisica e Astronomia, Università di Firenze, Italy 2 INFN - Sezione di Firenze, Italy 3 Frankfurt Institute for Advanced Studies (FIAS), Germany 4 Johann Wolfgang Goethe University, Frankfurt am Main, Germany 5 INFN - Sezione di Firenze, Italy 6 INFN - Sezione di Torino, Italy 7 INFN - Oss. Astrofisico di Arcetri, Italy 8 Indian Institute of Technology Gandhinagar, India

Introduction

Vorticity in peripheral collisions[1, 2, 3]) provides information about the (mean) hydrodynamic initial conditions and it is related to the onset of peculiar physics in the plasma at high temperature, such as the chiral vortical effect [4]. It has been shown that vorticity gives rise to polarization of particles in the final state, so that e.g. a baryon polarization can be used to detect it [5, 6]. In relativistic hydrodynamics, one can define several vorticities:

- Kinematic vorticity: \(\omega_{\text{kin}} = \frac{1}{2} (\partial u_x - \partial u_y) \)
- T-vorticity: \(\Omega_{\text{t}} = \frac{1}{2} \left[\partial (u_x u_t) - \partial (u_y u_t) \right] \)
- Thermal vorticity: \(\omega_{\text{th}} = \frac{1}{2} \left[\partial (\beta_x \beta_t) - \partial (\beta_y \beta_t) \right] \)

Each having peculiar features.

Particularly,

- for an ideal uncharged fluid, T-vorticity vanishes if it vanishes in the initial state, unlike kinematic and thermal vorticity,
- thermal vorticity is constant at full thermodynamical equilibrium and in local thermodynamical equilibrium drives particle polarization.

Modeling of the initial conditions

We have studied vorticity formation with our ECHO-QGP 3+1 D code [7] implementing relativistic dissipative hydrodynamics in the Israel-Stewart formulation with minimal Bjorken initial conditions (i.e. with \(u^\beta = 0^\beta = y^\beta = 0 \)) and with an initial energy density \(\varepsilon(x, y, \eta) \) modified with a function \(f(\eta) \), being \(\eta \) the longitudinal Bjorken coordinate, such as to have a finite angular momentum \[8, 9].

Validation of the code used for this study

To validate the core routines of our ECHO-QGP code, we performed a numerical simulation of a Bjorken conformal flow with an azimuthally symmetric radial expansion and we compared the results with the semi-analytic solutions that extend to the viscous case [13, 14] the solutions previously found by Galuber and Yarom [11, 12] in the unviscid case.

Sensitivity to \(\eta/s \)

The free parameters have been chosen following ref. [9], where they were adjusted to reproduce the data in Au-Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV. The values of \(\eta_s \) and \(\eta/s \) have been chosen to obtain (qualitatively) the best agreement between our calculated pion \(\eta/s \) and the measured directed flow for charged particles in the central rapidity region by the STAR collaboration [10].

Results on thermal vorticity and polarization

The relation between the polarization vector of a spin 1/2 particle and thermal vorticity is [5]:

\[\eta(p) = \frac{1}{8m} \int d^3 p \, n(p) \left(\frac{m}{p} \right) \eta \left(\frac{\gamma m}{p} \right) \]

But the polarization vector which is measurable is the one in the decaying particle rest frame:

\[\Pi_0 = \Pi - \frac{p}{(m + p)} \eta \]

References

ECHO-QGP is freely distributed under the terms of the GPLv2 license and can be downloaded from: http://theory.infn.it/echoqqp/ For more informations, please contact Gabriele Inghirami at inghirami@fias.uni-frankfurt.de

Preprint article:
ECHO-QGP website:
http://theory.infn.it/echoqqp