# Measurement of low-mass dielectrons in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \,\,{\rm TeV}$ with Alice

#### Quark Matter, Sep.27. - Oct.3 2015, Kobe, Japan

THEO BRÖKER ON BEHALF OF THE ALICE COLLABORATION Institut für Kernphysik, Goethe- Universität Frankfurt

# MOTIVATION **Low-Mass Dielectrons** Formed in all stages of the collision











- Negligible final-state interactions
- Important probe for medium effects in heavy-ion collisions
- Dielectron production in p-Pb collisions probe possible cold nuclear matter effects

### **ELECTRON IDENTIFICATION**

Combined information



electron inclusion electron inclusion,



## SIGNAL EXTRACTION

- Construct all possible unlike-sign pair combinations per event
- Combinatorial background is estimated by like-sign distribution

$$N_{T} \alpha = 2 R \sqrt{N_{+}} N$$

**ALICE** Preliminary p-Pb NSD  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 



Acceptance correction factor R from mixed events

• 2013 p-Pb data at  $\sqrt{s_{\rm NN}} = 5.02 \,\,{\rm TeV}$  $1.2 \times 10^8$  minimum-bias events ( $\mathcal{L}_{int} = 0.57 \text{ nb}^{-1}$ )



## RESULTS





|                   |                                                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> |
|-------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                   | ALICE Preliminary                                                                    | Cocktail sum with uncertainties                             | $= \sum_{i=1}^{3} 10^{-2} = \text{ALICE Preliminary} \text{Cocktail sum with uncertainties}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _           |
| :                 | $- p-Pb NSD \sqrt{s_{NN}} = 5.02 \text{ TeV} $<br>$p_{\tau}^{e} > 0.2 \text{ GeV}/c$ | $\omega \rightarrow ee and \omega \rightarrow \pi^0 ee$     | $ \begin{array}{c} \begin{array}{c} \bigoplus \\ \bigoplus \\ \bigoplus \\ \end{array} \end{array} = \begin{array}{c} p - Pb \text{ NSD } \sqrt{s_{NN}} = 5.02 \text{ TeV} \\ \hline p_{T}^{e} > 0.2 \text{ GeV}/c \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nb)         |
| _10 <sup>-3</sup> | $1.1 \text{ GeV}/c^2$                                                                | $\phi \rightarrow ee \text{ and } \phi \rightarrow \eta ee$ | $= \frac{1}{2} = $ | μb) _       |

