Bulk evolution of heavy ion collisions in the beam energy scan: New developments and first results

Björn Schenke, Brookhaven National Laboratory
in collaboration with Akihiko Monnai (RBRC)

September 30 2015
Quark Matter 2015
Kobe, Japan
Introduction

Low energy collisions demand improvements of existing hydrodynamic simulations, including:

- Net-baryon current ✓
- Equation of state at finite baryon chemical potential ✓
- Initial state with fluctuating baryon- and entropy-density ✓
- Fluctuations in all three spatial dimensions ✓

- Baryon diffusion (to do)
- Strangeness and electric currents (to do)

Will show

- momentum and rapidity distributions at different energies
- rapidity dependent flow and the effect of $(\eta/s)(T)$
- two-particle pseudo rapidity correlations (of $h^{+/−}$ and net-baryons)
Hydrodynamics

Use the state of the art 3+1D viscous relativistic hydrodynamics MUSIC with shear and bulk viscosity and all nonlinear terms that couple bulk viscous pressure and shear-stress tensor.

Solve $\partial_\mu T^{\mu\nu} = 0$ and $\partial_\mu J^\mu_B = 0$ along with

$$
\tau_\Pi \ddot{\Pi} + \Pi = -\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}
$$

$$
\tau_\pi \ddot{\pi}^{(\mu\nu)} + \pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_7 \pi^{(\mu}_\alpha \pi^{\nu)}\alpha - \tau_{\pi\pi} \pi^{(\mu}_\alpha \sigma^{\nu)}\alpha + \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu}
$$

The transport coefficients $\tau_\Pi, \delta_{\Pi\Pi}, \lambda_{\Pi\pi}, \tau_\pi, \delta_{\pi\pi}, \varphi_7, \tau_{\pi\pi}, \lambda_{\pi\Pi}$ are fixed using formulas derived from the Boltzmann equation near the conformal limit.

Viscosities

In the calculations presented here we use:
- shear viscosity (constant or with T dependence to be defined)
- bulk viscosity:

![Graph showing viscosities vs T/Tc]

G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha and M. Strickland,
Phys. Rev. D 90, 125026 (2014);

QGP: F. Karsch, D. Kharzeev and K. Tuchin,

Hadron Gas:
J. Noronha-Hostler, J. Noronha and C. Greiner,

To reduce the sensitivity to δf corrections at high p_T we have the low T value drop exponentially
Equation of state

Construct EoS at finite μ_B using Taylor expanded lattice data:

\[
P \left(\frac{1}{T^4} \right) = \frac{P_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + O \left(\left(\frac{\mu_B}{T} \right)^6 \right)
\]

Currently using data for parameters P_0^{lat} and $\chi_B^{(2)}$ from:

$\chi_B^{(4)}$ from the ratio $\chi_B^{(4)}/\chi_B^{(2)}$ in a HRG and parton gas model
Initial conditions - 3DMC-Glauber with quarks

Introduce a simple extension of the Monte Carlo Glauber model.

We use constituent quarks.

Constituent quark initial positions in the transverse plane are sampled from a 2D exponential distribution around the nucleon center (Nucleons are sampled from Woods-Saxon).

Their rapidities are sampled from nuclear parton distribution functions (in this talk we will use CTEQ10 and EPS09).

Their cross sections can be determined geometrically to reproduce the nucleon-nucleon cross sections.
Event-by-event baryon density

Transverse distribution:
Implement black disk and Gaussian wounding to determine wounded quarks

Longitudinal distribution:
Implement an MC version of the *Lexus* model
S. Jeon and J. Kapusta, PRC56, 468 (1997)

Idea: Rapidity distributions in heavy ion collisions follow via linear extrapolation from p+p collisions
Distribution in p+p collisions is parametrized and fit to data

Probability for a quark with rapidity y_P to get rapidity y after collision with another quark with rapidity y_T:

$$Q(y, y_P, y_T) = \lambda \frac{\cosh(y - y_T)}{\sinh(y_P - y_T)} + (1 - \lambda)\delta(y - y_P)$$

where we treat λ as a free parameter
(it characterizes the stopping power for quarks)
Event-by-event baryon- and entropy density

Deposit entropy density (fluctuating with NBD) between the collided constituent quarks using a Gaussian profile in the transverse plane and a constant distribution (with Gaussian edges) in rapidity

\[\sqrt{s} = 200 \text{GeV} \]

energy density

baryon density
Event-by-event baryon- and entropy density

Deposit entropy density (fluctuating with NBD) between the collided constituent quarks using a Gaussian profile in the transverse plane and a constant distribution (with Gaussian edges) in rapidity.

\[\sqrt{s} = 19.6 \text{GeV} \]

- energy density
- baryon density
Results
Identified particle transverse momentum spectra

Bulk viscosity needed to get mean p_T right
Same as with IP-Glasma initial conditions:
Charged hadron pseudo-rapidity distributions

200 GeV

62.4 GeV

19.6 GeV

Net-baryon rapidity distributions

T dependent η/s from rapidity dependence

Numbers (a,b) are the slopes in [GeV$^{-1}$] in:

$$(\eta T/(\varepsilon + P))(T) = 0.08 + a(T_c - T)\theta(T_c - T) + b(T - T_c)\theta(T - T_c)$$

where $T_c(\mu_B)$
T dependent η/s from rapidity dependence

Numbers (a,b) are the slopes in $[\text{GeV}^{-1}]$ in:

$$(\eta T/(\varepsilon + P))(T) = 0.08 + a(T_c - T)\theta(T_c - T) + b(T - T_c)\theta(T - T_c)$$

where $T_c(\mu_B)$

$3\text{DMCG+MUSIC} \ \eta/s=0.12$

$3\text{DMCG+MUSIC Tdep 2-20}$

$3\text{DMCG+MUSIC Tdep 20-2}$
T dependent η/s from rapidity dependence

Numbers (a,b) are the slopes in [GeV$^{-1}$] in:

$$\frac{\eta T}{(\varepsilon + P)}(T) = 0.08 + a(T_c - T)\theta(T_c - T) + b(T - T_c)\theta(T - T_c)$$

where $T_c(\mu_B)$

![Graph showing dependence of η/s on temperature](image)
Data favors large hadronic η/s. No room for large QGP η/s.

Two-particle pseudo-rapidity correlations

\[C(\eta_1, \eta_2) = \frac{\langle N(\eta_1)N(\eta_2) \rangle}{\langle N(\eta_1) \rangle \langle N(\eta_2) \rangle} \]

to remove the effect of a residual centrality dependence in 5% bin

\[C_N(\eta_1, \eta_2) = \frac{C(\eta_1, \eta_2)}{C_p(\eta_1)C_p(\eta_2)} \]

with

\[C_p(\eta_{1/2}) = \frac{1}{2Y} \int_{-Y}^{Y} C(\eta_1, \eta_2) \, d\eta_{2/1} \]

Expand in Legendre polynomials. The coefficients are given by

\[a_{n,m} = \int C_N(\eta_1, \eta_2) \frac{T_n(\eta_1) T_m(\eta_2) + T_n(\eta_2) T_m(\eta_1)}{2} \, \frac{d\eta_1}{Y} \, \frac{d\eta_2}{Y} \]

see: A. Bzdak, D. Teaney, Phys. Rev. C 87, 024906
Two-particle pseudo-rapidity correlations

A. Monnai, B. Schenke, arXiv:1509.04103

Experimental data: ATLAS-CONF-2015-020

\[
\begin{align*}
(\lambda_{(n,m)})^{1/2} & \\
0.1 & \\
0.01 & \\
0.001 & \\
\langle 1,1 \rangle & \\
\langle 2,2 \rangle & \\
\langle 3,3 \rangle & \\
\langle 4,4 \rangle & \\
\langle 5,5 \rangle & \\
\langle 6,6 \rangle & \\
\langle 1,3 \rangle & \\
\langle 2,4 \rangle & \\
\langle 3,5 \rangle & \\
\langle 4,6 \rangle & \\
\langle 5,7 \rangle &
\end{align*}
\]

\[\text{Pb+Pb 2760 GeV} \quad p_T>0.5 \text{ GeV}\]

ATLAS prelim.
initial entropy density
\(\eta/s=0, \zeta/s=0\)
\(\eta/s=0.12, (\zeta/s)(T)\)

20-25%

missing short range correlations
Collision energy dependence

A. Monnai, B. Schenke, arXiv:1509.04103

Pb+Pb 2760 GeV $\eta/s=0.12$, $(\zeta/s)(T)$
Au+Au 200 GeV $\eta/s=0.12$, $(\zeta/s)(T)$
Au+Au 19.6 GeV $\eta/s=0.12$, $(\zeta/s)(T)$

$p_T>0.5$ GeV 20-25%

higher energy
Effect of shear and bulk viscosity

Au+Au 200 GeV
\(p_T > 0.5\) GeV

Initial entropy density

\[\eta/s = 0.2 (\zeta/s)(T)\]
\[\eta/s = 0.12 (\zeta/s)(T)\]
\[\eta/s = 0.12, \zeta/s = 0\]

A. Monnai, B. Schenke, arXiv:1509.04103
Effect of the initial number of sources

\[\langle a_{(n,m)} \rangle^{1/2} \]

initial entropy density - nucleons
initial entropy density - constituent quarks

Au+Au 200 GeV, 20-25%

A. Monnai, B. Schenke, arXiv:1509.04103

more sources
Net baryon pseudo-rapidity correlations

Measure this: Could help our understanding of baryon stopping
Couple to UrQMD: short range correlations matter

G. Denicol, C. Gale, S. Jeon, A. Monnai, S. Ryu, B. Schenke, work in progress

\[\left| \eta \right| < 2.4 \]

\(p_T > 0.5 \text{ GeV} \)

\[(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,3)(2,4)(3,5)(4,6)(5,7) \]

ATLAS prelim.
UrQMD \(\eta/s=0.12, (\zeta/s)(T) \)
UrQMD \(\eta/s=0, \zeta/s=0 \)
\(\eta/s=0.12, (\zeta/s)(T) \)
\(\eta/s=0, \zeta/s=0 \)

20-25%

also see P. Bozek, W. Broniowski, A. Olszewski, arXiv:1509.04124
Conclusions

• 3+1D viscous relativistic fluid dynamics with fluctuations of baryon number and entropy density in all three dimensions

• Lattice equation of state at finite μ_B implemented

• Rapidity and energy dependence of flow harmonics contains information on transport coefficients’ T and μ_B dependence

• Two particle rapidity correlations contain information on the number of sources; are sensitive to short range correlations

• Net-baryon rapidity correlations can shed more light on baryon stopping: Measure them!
Backup
Constructing the equation of state (EoS)

Taylor Expansion

Cannot deal with complex Fermion determinants on lattice, so Taylor expand around zero baryon chemical potential

\[
\frac{P}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + \mathcal{O} \left[\left(\frac{\mu_B}{T} \right)^6 \right]
\]

because of matter-anti-matter symmetry only even powers appear similarly for energy density and entropy density

For net-baryon density we have

\[
\frac{n_B}{T^3} = 0 + \chi_B^{(2)} \frac{\mu_B}{T} + \frac{1}{3!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^3 + \mathcal{O} \left[\left(\frac{\mu_B}{T} \right)^5 \right]
\]
Constructing the equation of state (EoS)

Smooth matching (cross over)

As a first try, we match the HRG and lattice EoS smoothly

\[
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_C(\mu_B)}{\Delta T_C} \right] \frac{P_{\text{HRG}}(T)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_C(\mu_B)}{\Delta T_C} \right] \frac{P_{\text{lat}}(T_s)}{T_s^4}
\]

In the future one can introduce a critical point here.

\[T_C: \text{connecting temperature} \]
\[\Delta T_C: \text{width of overlap area} \]
\[T_s: \text{temperature shift} \]
\[T_s = T + d[T_C(0) - T_C(\mu_B)]\]
Constructing the equation of state (EoS)

Smooth matching (cross over)

As a first try, we match the HRG and lattice EoS smoothly

\[
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_C(\mu_B)}{\Delta T_C} \right] \frac{P_{\text{HRG}}(T)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_C(\mu_B)}{\Delta T_C} \right] \frac{P_{\text{lat}}(T_s)}{T_s^4}
\]

\[
T_C(\mu_B) = 0.166 \text{GeV} - c(0.139 \mu_B^2 + 0.053 \mu_B^4)
\]

based on the chemical freeze-out line (c=1)

Cleymans et al, PRC73, 034905 (2006)

For the connecting line we use c=d=0.4, \(\Delta T_C=0.1 \) \(T_C(0) \)
Constructing the equation of state (EoS)

Smooth matching (cross over)

As a first try, we match the HRG and lattice EoS smoothly

\[
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh\frac{T - T_C(\mu_B)}{\Delta T_C} \right] \frac{P_{HRG}(T)}{T^4} + \frac{1}{2} \left[1 + \tanh\frac{T - T_C(\mu_B)}{\Delta T_C} \right] \frac{P_{lat}(T_s)}{T_s^4}
\]

Parameters \(P_{0}^{\text{lat}} \) and \(\chi_B^{(2)} \) are determined from the lattice:

\[\chi_B^{(4)} \] is obtained from the ratio \(\chi_B^{(4)}/\chi_B^{(2)} \) in a HRG and parton gas model

Borsanyi et al, JHEP1011, 077 (2010)
δf corrections in the presence of net baryons

Grad’s 14 moment method

\[\delta f^i = -f_0^i (1 \pm f_0^i) (b_i \varepsilon^{B \mu}_\mu p_i^\mu + \varepsilon_{\mu \nu} p_i^\mu p_i^\nu) \]

particle i’s baryon quantum number

\[\varepsilon^{B}_\mu \text{ and } \varepsilon_{\mu \nu} \text{ are determined by the self-consistency conditions} \]

\[\delta T^{\mu \nu} = \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu p_i^\nu \delta f^i = -\Pi \Delta^{\mu \nu} + \pi^{\mu \nu} \]

\[\delta N^\mu_B = \sum_i \int \frac{b_i g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu p_i^\nu \delta f^i = \gamma^\mu_B = 0 \text{ (no baryon diffusion)} \]
δf corrections in the presence of net baryons

Grad’s 14 moment method

\[\delta f^i = -f_0^i (1 \pm f_0^i) (b_i \varepsilon^B_{\mu} p_i^\mu + \varepsilon_{\mu\nu} p_i^\mu p_i^\nu) \]

After tensor decomposition and one finds

\[\varepsilon^B_{\mu} = D_{\Pi\Pi} u_\mu \]

\[\varepsilon_{\mu\nu} = (B_{\Pi\Delta_{\mu\nu}} + \tilde{B}_{\Pi} u_\mu u_\nu) \Pi + B_\pi \pi_{\mu\nu} \]

where the coefficients are computed in kinetic theory

We parametrize them as functions of T and \(\mu_B \)

Note: Results of net baryon density are very sensitive to accuracy of the bulk-δf parametrization
Transverse momentum spectra at 62.4 GeV

\(\frac{1}{2\pi} \frac{dN}{dy} \frac{dp_T}{p_T} [\text{GeV}^{-2}]\)

- STAR \(\pi^+\) 0-5%
- STAR \(K^+\) 0-5%
- 3DMCG+MUSIC 0-3%

RHIC 62.4 GeV
0-5%
v_2 vs pseudo-rapidity at different energies

![Graph showing v_2 vs pseudo-rapidity at different energies for PHOBOS and 3DMCG+MUSIC at various energies. The graph includes data points and error bars for Au+Au collisions at 0-40% centrality. The y-axis represents v_2 and the x-axis represents η_p. The legend includes symbols for PHOBOS and 3DMCG+MUSIC at 200 GeV, 62.4 GeV, and 19.6 GeV. The $\eta/s=0.12$ is indicated in the plot.]
Pb+Pb 2760 GeV pseudo-rapidity distribution

![Graph showing Pb+Pb 2760 GeV pseudo-rapidity distribution with ALICE 20-30% and 3DMCG+MUSIC data points and curves.](image)
T dependent η/s from rapidity dependence

Numbers (a,b) are the slopes in [GeV^{-1}] in:

$$(\eta T/(\varepsilon + P))(T) = 0.08 + a(T_c - T)\theta(T_c - T) + b(T - T_c)\theta(T - T_c)$$

where $T_c(\mu_B)$

![Graph showing η/s vs. T[GeV]](image-url)
Pseudo-rapidity dependent flow

Au+Au 200GeV 10-20%
p_T > 0.15 GeV

3DMCG+MUSIC
STAR TPC
STAR FTPC

Two-particle pseudo-rapidity correlations

A. Monnai, B. Schenke, arXiv:1509.04103

Pb+Pb 2760 GeV
p_T>0.5 GeV

ATLAS prelim.
initial entropy density
\(\eta/s=0.12 \), \((\zeta/s)(T) \)

65-70%