Energy loss and shear viscosity at NLO in a high-temperature QGP

Jacopo Ghiglieri, AEC ITP, University of Bern

\boldsymbol{u}^{b}

BERN
AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS
In collaboration with Guy Moore and Derek Teaney Quark Matter 2015, Kobe, September 282015

Overview

- Aim: extend the AMY effective kinetic theory to NLO Arnold Moore Yaffe 2002
- NLO means $O(g)$ effects from the medium
- Relies on cool new light-cone techniques (much more complicated for non-relativistic or mildly relativistic degrees of freedom)

Pedagogical review in JG Teaney 1502.03730 Gritty details (and quarks) in JG Moore Teaney 1509.07773 OUT TODAY!

Overview

- Applications
- Ket propagation and quenching in the

Pedagogical review in JG Teaney 1502.03730
Gritty details (and quarks) in JG Moore Teaney 1509.07773 OUT TODAY!
Future Monte Carlo applications

Overview

- Applications

No quarks in this talk

- Ket propagation and quenching in the

Pedagogical review in JG Teaney 1502.03730
Gritty details (and quarks) in JG Moore Teaney 1509.07773 OUT TODAY!
Future Monte Carlo applications

- (Isotropic) thermalization (à la Kurkela Lu Moore York, Kurkela Lu (2014)) at NLO JG Kurkela

Overview

- Applications

No quarks in this talk

- Ket propagation and quenching in the GP

Pedagogical review in JG Teaney 1502.03730
Gritty details (and quarks) in JG Moore Teaney 1509.07773 OUT TODAY!
Future Monte Carlo applications

- (Isotropic) thermalization (à la Kurkela Lu Moore York, Kurkela Lu (2014)) at NLO JG Kurkela
- Transport coefficients (η, \ldots) at NLO. Theoretically harder, working on an estimate

Motivation

- How reliable is the thermal pQCD when extrapolating to $\alpha_{\mathrm{s}}=0.3$?
- For thermodynamical quantities (p, s, \ldots) either strict expansion in g, QCD $(T)+\operatorname{EQCD}(g T)+\operatorname{MQCD}\left(g^{2} T\right)$ (Arnold-Zhai, Braaten Nieto, etc) or non-perturbative solution of EQCD (Kajantie Laine etc.) or resummations (HTLpt, Andersen Braaten Strickland etc.)
- For dynamical quantities? We now have 2 contrasting examples of $O(g)$ corrections: very large for heavy quark diffusion (Caron-Huot Moore (2007)), reasonable ($\sim 20 \%$) for e.m. probes (JG et al., Laine, Laine Ghisoiu (2013-14))

Outline

\checkmark Introduction and motivation

- A useful reorganization of the LO kinetic theory
- leading to the NLO extension for jets, with
- effective descriptions in terms of Wilson line operators
- an outlook to the shear viscosity

Overview

The AMY kinetic approach

- Distribution of dilute high-energy particles in a thermalized medium

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{2 \leftrightarrow 2}+C^{1 \leftrightarrow 2}
$$

- At leading order: elastic, number-preserving $2 \leftrightarrow 2$ processes and collinear, number-changing $1 \leftrightarrow 2$ processes (LPM, AMY, all that) AMY (2003)

- Both implemented in MARTINI Schenke Jeon Gale

Reorganization

- Reorganization of the LO collision operator

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{\mathrm{large}}\left[\mu_{\perp}\right]+C^{\mathrm{diff}}\left[\mu_{\perp}\right]+C^{\text {coll }}
$$

Reorganization

- Reorganization of the LO collision operator

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{\mathrm{large}}\left[\mu_{\perp}\right]+C^{\mathrm{diff}}\left[\mu_{\perp}\right]+C^{\text {coll }}
$$

- Large-angle processes: $2 \leftrightarrow 2$ processes with large momentum transfer
- $Q>g T, O(1)$ deflection angles
- Need to exclude the IR with a cutoff μ_{\perp}
- Logarithmic sensitivity to the cutoff

- Can use bare matrix elements

Reorganization

- Reorganization of the LO collision operator

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{\text {large }}\left[\mu_{\perp}\right]+C^{\text {diff }}\left[\mu_{\perp}\right]+C^{\text {coll }} \\
C^{\text {diff }}\left[\mu_{\perp}\right]=\frac{\partial}{\partial p^{i}}\left[\eta_{D}(p) p^{i} f(\mathbf{p})\right]+\frac{1}{2} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\left[\left(\hat{p}^{i} \hat{p}^{j} \hat{q}_{L}\left(\mu_{\perp}\right)+\frac{1}{2}\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right) \hat{q}\left(\mu_{\perp}\right)\right) f(\mathbf{p})\right]
\end{gathered}
$$

- Diffusion: Fokker-Planck drag limit for small Q
- Transverse momentum broadening: well known

$$
\begin{array}{rlrl}
\hat{q}\left(\mu_{\perp}\right) & =g^{2} C_{A} \int^{\mu_{\perp}} \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \int \frac{d q^{+}}{2 \pi}\left\langle F^{-\perp}(Q) F_{\perp}^{-}\right\rangle_{q^{-}=0} \\
& =g^{2} C_{A} T \int^{\mu_{\perp}} \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{m_{D}^{2}}{q_{\perp}^{2}+m_{D}^{2}}=\frac{g^{2} C_{A} T m_{D}^{2}}{2 \pi} \ln \frac{\mu_{\perp}}{m_{D}} & F=000 \text { \& }
\end{array}
$$

Aurenche Gelis Zaraket JHEP0205 (2002), Caron-Huot PRD79 (2009)

Reorganization

- Reorganization of the LO collision operator

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{\text {large }}\left[\mu_{\perp}\right]+C^{\mathrm{diff}}\left[\mu_{\perp}\right]+C^{\mathrm{coll}} \\
C^{\mathrm{diff}}\left[\mu_{\perp}\right]=\frac{\partial}{\partial p^{i}}\left[\eta_{D}(p) p^{i} f(\mathbf{p})\right]+\frac{1}{2} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\left[\left(\hat{p}^{i} \hat{p}^{j} \hat{q}_{L}\left(\mu_{\perp}\right)+\frac{1}{2}\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right) \hat{q}\left(\mu_{\perp}\right)\right) f(\mathbf{p})\right]
\end{gathered}
$$

- Longitudinal momentum broadening

$$
\begin{array}{rlrl}
\hat{q}_{L}\left(\mu_{\perp}\right) & =g^{2} C_{A} \int^{\mu_{\perp}} \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \int \frac{d q^{+}}{2 \pi}\left\langle F^{-z}(Q) F^{-z}\right\rangle_{q^{-}=0} & F \\
& =g^{2} C_{A} T \int^{\mu_{\perp}} \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{q_{\perp}^{2}+m_{\infty}^{2}}=\frac{g^{2} C_{A} T m_{\infty}^{2}}{2 \pi} \ln \frac{\mu_{\perp}}{m_{\infty}} & F & F
\end{array}
$$

Second line: sum rule from analytical properties of amplitudes at space- and light-like separations

Reorganization

- Reorganization of the LO collision operator

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{\text {large }}\left[\mu_{\perp}\right]+C^{\mathrm{diff}}\left[\mu_{\perp}\right]+C^{\mathrm{coll}} \\
C^{\mathrm{diff}}\left[\mu_{\perp}\right]=\frac{\partial}{\partial p^{i}}\left[\eta_{D}(p) p^{i} f(\mathbf{p})\right]+\frac{1}{2} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\left[\left(\hat{p}^{i} \hat{p}^{j} \hat{q}_{L}\left(\mu_{\perp}\right)+\frac{1}{2}\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right) \hat{q}\left(\mu_{\perp}\right)\right) f(\mathbf{p})\right]
\end{gathered}
$$

- Drag: related by Einstein-like relation to momentum broadening

$$
\eta_{D}(p)=\frac{\hat{q}_{L}}{2 T p}+\mathcal{O}\left(\frac{1}{p^{2}}\right)
$$

- In the end, cutoff dependence vanishes between diffusion and large-angle scatterings

Reorganization

- Reorganization of the LO collision operator

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{\mathrm{large}}\left[\mu_{\perp}\right]+C^{\mathrm{diff}}\left[\mu_{\perp}\right]+C^{\text {coll }}
$$

- Collinear processes: $1 \leftrightarrow 2$ processes with strictly collinear kinematics

At LO no change

contaminations from
diffusion and semi-collinear

Going to NLO

- As usual in thermal field theory, the soft scale $g T$ introduces NLO $O(g)$ corrections
- The diffusion and the collinear regions receive $O(g)$ corrections
- There is a new semi-collinear region

Collinear corrections

- The differential eq. for LPM resummation gets correction from NLO $C\left(q_{\perp}\right)$ and from the thermal asymptotic mass at NLO (Caron-Huot 2009)

$$
\mathcal{C}_{\mathrm{LO}}\left(q_{\perp}\right)=\frac{g^{2} C_{A} T m_{D}^{2}}{q_{\perp}^{2}\left(q_{\perp}^{2}+m_{D}^{2}\right)}
$$

$\mathcal{C}_{\mathrm{NLO}}\left(q_{\perp}\right)$ complicated but analytical (Euclidean tech) Caron-Huot PRD79 (2009), Lattice: Panero et al. (2013)

Regions of overlap with the diffusion and semi-collinear regions need to be subtracted

Diffusion corrections

- At NLO one has these diagrams

- For transverse: Euclidean calculation Caron-Huot PRD79 (2009)

$$
\hat{q}_{\mathrm{NLO}}=\hat{q}_{\mathrm{LO}}+\frac{g^{4} C_{A}^{2} T^{3}}{32 \pi^{2}} \frac{m_{D}}{T}\left(3 \pi^{2}+10-4 \ln 2\right)
$$

- For longitudinal:

$$
\hat{q}_{L}\left(\mu_{\perp}\right)_{\mathrm{LO}}=g^{2} C_{A} T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{q_{\perp}^{2}+m_{\infty}^{2}}
$$

$\hat{q}_{L}\left(\mu_{\perp}\right)_{\mathrm{NLO}}=g^{2} C_{A} T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}+\delta m_{\infty}^{2}}{q_{\perp}^{2}+m_{\infty}^{2}+\delta m_{\infty}^{2}} \approx g^{2} C_{A} T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left[\frac{m_{\infty}^{2}}{q_{\perp}^{2}+m_{\infty}^{2}}+\frac{q_{\perp}^{2} \delta m_{\infty}^{2}}{\left(q_{\perp}^{2}+m_{\infty}^{2}\right)^{2}}\right]$
light-cone sum rule still sees only dispersion relation (with $O(g)$ correction). NLO correction UV-log sensitive

Semi-collinear processes

- Seemingly different processes boiling down to wider-angle radiation

K soft plasmon, timelike
- Evaluation: introduce "modified \hat{q} " tracking the changes in the small light-cone component p^{-}of the gluons. Can be evaluated in EQCD
"standard"

$$
\hat{q}=g^{2} C_{A} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \int \frac{d q^{+}}{2 \pi}\left\langle F^{-\perp}(Q) F_{\perp}^{-}\right\rangle_{q^{-}}=0
$$

"modified" $\hat{q}(\delta E)=g^{2} C_{A} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \int \frac{d q^{+}}{2 \pi}\left\langle F^{-\perp}(Q) F_{\perp}^{-}\right\rangle_{q^{-}=\delta E}$

- Rate \propto "modified \hat{q} " \times DGLAP splitting. IR log divergence makes collision operator finite at NLO

Towards NLO shear

- Computing transport coefficients (η) requires knowing how a $T^{i j}$ disturbance induces a second $T^{i j}$ disturbance
- The challenge is again in the soft regions

$T^{i j}$ insertions on the same side, momenta correlated. Diffusion picture applies

> $T^{i j}$ insertions on opposite sides, momenta uncorrelated. Diffusion picture does not apply

- No diffusion picture = no "easy" light-cone sum rules, only bruteforce HTL. Silver lining: they're finite, so just estimate the number and vary it
- How will NLO η go? Large NLO qhat: $\eta \downarrow$. NLO longitudinal diffusion \& semi-collinear: $\eta \uparrow$. Total? Stay tuned!

Conclusions

- Useful reorganization of the kinetic theory with light-front operators that effectively describe soft momentum exchanges

These operators can be evaluated using new techniques

- The reorganization is valid up to NLO and the operators have all been computed
Possibility to compute (some of) them on the lattice Panero et al.
- Applications are underway
- implementation in MARTINI
- thermalization studies
- estimates of NLO corrections to η

Backup

Elastic processes

Double line: hard (one component $\mathrm{O}(\mathrm{T})$ or larger)
Id. specified with curl or arrow when needed

- Boltzmann picture, loss - gain terms

$$
\begin{aligned}
C_{a}^{2 \leftrightarrow 2}[P](\boldsymbol{p})=\quad \frac{1}{4|\boldsymbol{p}| \nu_{a}} & \sum_{b c d} \\
& \int_{\boldsymbol{k \boldsymbol { p } ^ { \prime } \boldsymbol { k } ^ { \prime }}}\left|\mathcal{M}_{c d}^{a b}\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(P+K-P^{\prime}-K^{\prime}\right) \\
& \times\left\{P^{a}(\boldsymbol{p}) n^{b}(k)\left[1 \pm n^{c}\left(p^{\prime}\right)\right]\left[1 \pm n^{d}\left(k^{\prime}\right)\right]-\text { gain }\right\}
\end{aligned}
$$

- Integration with bare matrix elements gives log divergences for soft intermediate states, cured by HTL resummation \Rightarrow nasty n-dimensional numerics?

Radiative processes

- Effective $1 \leftrightarrow 2: 1+n \leftrightarrow 2+n$ with LPM suppression, collinear kinematics

$$
\begin{aligned}
C_{a}^{1 \leftrightarrow 2}[P](\boldsymbol{p})=\frac{(2 \pi)^{3}}{|\boldsymbol{p}|^{2} \nu_{a}} & \left\{\sum_{b c} \int_{0}^{p / 2} d q \gamma_{b c}^{a}(\boldsymbol{p} ;(p-q) \hat{\boldsymbol{p}}, q \hat{\boldsymbol{p}})\left\{P^{a}(\boldsymbol{p})\left[1 \pm n^{b}(p-q)\right]\left[1 \pm n^{c}(q)\right]-\text { gain }\right\}\right. \\
& \left.+\sum_{b c} \int_{0}^{\infty} d q \gamma_{a b}^{c}((p+q) \hat{\boldsymbol{p}} ; \boldsymbol{p}, q \hat{\boldsymbol{p}})\left\{P^{a}(\boldsymbol{p}) n^{b}(q)\left[1 \pm n^{c}(p+q)\right]-\text { gain }\right\}\right\}
\end{aligned}
$$

- Rates (gain and loss terms) individually quadratically IR divergent for soft gluon emission/ absorption, but gainloss is finite
- Both processes are implemented in MARTINI Schenke Gale Jeon PRC80 (2009)

Transverse momentum diffusion

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D'Eramo Liu Rajagopal, Benzke Brambilla Escobedo Vairo

- All points at spacelike or lightlike separation, only preexisting correlations
- Soft contribution becomes Euclidean! Caron-Huot PRD79 (2008)
- Can be "easily" computed in perturbation theory
- Possible lattice measurements Laine Rothkopf JHEP1307 (2013) Panero Rummukainen Schäfer $\mathbf{1 3 0 7 . 5 8 5 0}$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$ $G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$ $G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$
- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}
$G_{r r}(t, \mathbf{x})=T \sum_{n} \int d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)} G_{E}\left(\omega_{n}, p_{\perp}, p^{z}+i \omega_{n} t / x^{z}\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}
$G_{r r}(t, \mathbf{x})=T \sum_{n} \int d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)} G_{E}\left(\omega_{n}, p_{\perp}, p^{z}+i \omega_{n} t / x^{z}\right)$
- Soft physics dominated by $n=0$ (and t-independent)
$=>E Q C D!$
Caron-Huot PRD79 (2009)

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}

$$
G_{r r}(t, \mathbf{x})_{\mathrm{soft}}=T \int d^{3} p e^{i \mathbf{p} \cdot \mathbf{x}} G_{E}\left(\omega_{n}=0, \mathbf{p}\right)
$$

- Soft physics dominated by $n=0$ (and t-independent) $=>E Q C D!$

Euclideanization of light-cone soft

 physics

- At leading order

$$
C\left(x_{\perp}\right) \propto T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left(1-e^{i x_{\perp} \perp q_{\perp}}\right) G_{E}^{++}\left(\omega_{n}=0, q_{z}=0, q_{\perp}\right)=T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left(1-e^{i x_{\perp} \cdot q_{\perp}}\right)\left(\frac{1}{q_{\perp}^{2}}-\frac{1}{q_{\perp}^{2}+m_{D}^{2}}\right)
$$

- Agrees with the earlier sum rule in Aurenche Gelis Zaraket JHEP0205 (2002)
- At NLO: Caron-Huot PRD79 (2009)

Longitudinal momentum diffusion

- Field-theoretical lightcone definition (justifiable with SCET)

$$
\hat{q}_{L} \equiv \frac{g^{2}}{d_{R}} \int_{-\infty}^{+\infty} d x^{+} \operatorname{Tr}\left\langle U\left(-\infty, x^{+}\right) F^{+-}\left(x^{+}\right) U\left(x^{+}, 0\right) F^{+-}(0) U(0,-\infty)\right\rangle
$$

$F^{+-}=E^{z}$, longitudinal Lorentz force correlator

- At leading order

$$
\begin{aligned}
\hat{q}_{L} & \propto \int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}}\left(q^{+}\right)^{2} G_{++}^{>}\left(q^{+}, q_{\perp}, 0\right) \\
& =\int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}} T q^{+}\left(G_{++}^{R}\left(q^{+}, q_{\perp}, 0\right)-G^{A}\right)
\end{aligned}
$$

Longitudinal momentum diffusion

$$
\left.\hat{q}_{L}\right|_{\mathrm{LO}}=g^{2} C_{R} \int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}} T q^{+}\left(G_{R}^{--}\left(q^{+}, q_{\perp}\right)-G_{A}^{--}\left(q^{+}, q_{\perp}\right)\right)
$$

Longitudinal momentum diffusion

$$
\left.\hat{q}_{L}\right|_{\mathrm{LO}}=g^{2} C_{R} \int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}} T q^{+}\left(G_{R}^{--}\left(q^{+}, q_{\perp}\right)-G_{A}^{--}\left(q^{+}, q_{\perp}\right)\right)
$$

Longitudinal momentum diffusion

$$
\left.\hat{q}_{L}\right|_{\mathrm{LO}}=g^{2} C_{R} \int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}} T q^{+}\left(G_{R}^{--}\left(q^{+}, q_{\perp}\right)-G_{A}^{--}\left(q^{+}, q_{\perp}\right)\right)
$$

Longitudinal momentum diffusion

$$
\left.\hat{q}_{L}\right|_{\mathrm{LO}}=g^{2} C_{R} \int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}} T q^{+}\left(G_{R}^{--}\left(q^{+}, q_{\perp}\right)-G_{A}^{--}\left(q^{+}, q_{\perp}\right)\right)
$$

- Use analyticity to deform the contour away from the real axis and keep $1 / q^{+}$behaviour

$$
\left.\hat{q}_{L}\right|_{\mathrm{LO}}=g^{2} C_{R} T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{M_{\infty}^{2}}{q_{\perp}^{2}+M_{\infty}^{2}}
$$

