Quark Matter 2015 - XXV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Contribution ID: 518

Type: Poster

Baryon Number Fluctuations and Quark Correlations in the CGC Framework

Tuesday, 29 September 2015 16:30 (2 hours)

We calculate the two particle correlation function for the net baryon number fluctuations using the saturation/Color Glass Condensate (CGC) framework in proton-nucleus and heavy-light ion collisions. We show that the main contribution to the net baryon number fluctuations at mid-rapidity comes from $q\bar{q}$ pair production in the transverse plane. There are three intrinsic length scales associated with this process: the transverse size of the baryon fluctuation r_{\perp} , the inverse of the saturation scale Q_s^{-1} and the inverse of the mass $M_{q(\bar{q})}^{-1}$ for heavy massive quarks. We identify two regimes determined by the dominant scale $R_{max} = \max(Q_s^{-1}, M^{-1})$ and discuss in detail the properties of each regime as one varies the transverse scale of the baryon fluctuation r_{\perp} . In proton-nucleus collisions the net baryon correlation function is suppressed when $r_{\perp} > R_{max}$, while for heavy-light ion collisions this correlation extends up to the typical transverse size of the nucleus. These baryon number fluctuations generate non-trivial correlations which may propagate into the subsequent hydrodynamical evolution of the expanding fireball.

On behalf of collaboration:

NONE

Primary author: WERTEPNY, Douglas (The Ohio State University)

Co-authors: Dr SIEVERT, Matthew (Brookhaven National Laboratory); MARTINEZ GUERRERO, Mauricio (The Ohio State University)

Presenter: WERTEPNY, Douglas (The Ohio State University)

Session Classification: Poster Session

Track Classification: Initial State Physics and Approach to Equilibrium