Centrality dependence of low-\(p_T\) and high-\(p_T\) particle production in proton-lead collisions with ATLAS

Evgeny Shulga

for the ATLAS Collaboration
Introduction

p+A collisions at the LHC provide an opportunity to study the physics of the initial-state of ultra-relativistic A+A collisions

p+A multiplicity measurements:
• $dN_{ch}/d\eta$ – the most basic experimental probe which as a function of centrality can provide understanding of p+A interactions

Z-boson production:
• Clean probe to better understand p+Pb particle production scaling properties and underlying nature of the collision

pp dijet measurements:
• provide a tool to test how underlying event activity correlates with hard scattering kinematics in p+Pb interactions
ATLAS detector

Convection: $y^* = y_{CM} - 0.465 > 0$ is proton-going

- Inner Detector $|\eta| < 2.5$
- EMCal+HCal system $|\eta| < 4.9$
- Pb-going Forward Calorimeter $-4.9 < \eta < -3.2$
Data

- Multiplicity analysis:
 - 2012 p+Pb pilot run is used for the measurements:
 Integrated Luminosity: 1 μb⁻¹

- Z-boson production analysis:
 - 29.1 ± 1.0 nb⁻¹ for $Z \rightarrow ee$
 - 27.8 ± 0.9 nb⁻¹ for $Z \rightarrow \mu\mu$

- Dijet analysis:
 - pp at 2.76 TeV collisions (2013) with integrated luminosity of 4 pb⁻¹

- Centrality:
 - Pb-going Fcal is used to characterize event centrality
 - Gribov extension is evaluated for the centrality estimations
Centrality and Multiplicity in p+Pb
Multiplicity reconstruction methods

[arXiv:1508.00848]

Pixel tracks:
• $|\eta| < 2.5$
• provide p_T of the particle
• used to reweight HIJING -> Data

Pixel track method is used primarily as a consistency test.

$|\Delta \eta| < 0.015, \ |\Delta \phi| < 0.1, \ |\Delta \eta| < |\Delta \phi|$

Method 1: tracklet = Vertex + 2 hits/clusters (3 layers)
• is chosen as the default result for $dN_{ch}/d\eta$

Method 2: tracklet = Vertex + 2 hits/clusters (2 layers)
• is used for systematic uncertainties
dN/d\(\eta\) for different centralities

- \(dN_{\text{ch}}/d\eta\) is measured for \(|\eta| < 2.7\) in eight centrality intervals
- Forward backward asymmetry between p and Pb going directions grows with centrality

ATLAS

\(p+\text{Pb}, \ 1\ \mu\text{b}^{-1}\)

\(\sqrt{s_{\text{NN}}} = 5.02\ \text{TeV}\)

\(y_{\text{cm}} = 0.465\)

\(\eta\) for different centralities

\(\text{Pol2 fit}\)

[arXiv:1508.00848]
dN/d\eta per pair of participants

- To further investigate dN_{ch}/d\eta scaling with N_{part} Z-bosons can be used

- Standard Glauber, used up to now shows increase with \langle N_{part} \rangle
- GGCF with \omega_0=0.11 is almost flat with \omega_0=0.2 even decreases
\(\frac{dN_{ch}}{d\eta}/(\langle N_{part} \rangle/2) \) & \(10^9 N_Z/(\langle N_{coll} \rangle N_{evt})\)

- Similar shape of charged multiplicity and Z-yield
- Agreement in the geometric scaling \(\Rightarrow\) reflecting initial state conditions of the nucleus

E Shulga The XXVth International Conference on Nucleus-Nucleus Collisions
Z-production

ATLAS
\(p+Pb \) 2013, \(L_{\text{int}} = 29 \text{ nb}^{-1} \)
\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

- Fit represents \(\langle N_{\text{coll}} \rangle / \langle N_{\text{part}} \rangle \)
- Agreement in the geometric scaling
 \(\implies \) reflecting initial state conditions of the nucleus

\[10^6 \langle \frac{dN}{dy} \rangle \langle \frac{d^2N}{d\eta d\phi} \rangle \]

\[\langle N_{\text{part}} \rangle \]

E Shulga
The XXVth International Conference on Nucleus-Nucleus Collisions

[arXiv:1507.06232]
Centrality and Jets in p+Pb:
switching to even higher p_T
Jet R_{pPb}

- While the R_{pPb} is consistent with unity when evaluated inclusively in centrality, it is not unity when evaluated differentially in centrality.
ATLAS 2013 $p+$Pb data, 27.8 nb$^{-1}$
anti-k_t, $R=0.4$, $\sqrt{s_{NN}} = 5.02$ TeV

0-10% / 60-90%

p-going

- $+3.6 < y^* < +4.4$
- $+2.8 < y^* < +3.6$
- $+2.1 < y^* < +2.8$
- $+1.2 < y^* < +2.1$
- $+0.8 < y^* < +1.2$

Pb-going

- $+0.3 < y^* < +0.8$
- $-0.3 < y^* < +0.3$
- $-0.8 < y^* < -0.3$
- $-1.2 < y^* < -0.8$
- $-2.1 < y^* < -1.2$

Jet R_{CP}

R_{CP} / R_{pPb} scales with the total momentum of a jet for jets in the positive forward region suggesting a dependence on x of parton in proton.

How much of the centrality dependence (= dependence on ΣE_T in the negative forward region) comes from the dependence of ΣE_T on x in proton for individual NN collision?
pp and p+Pb

- **What is measured**: correlation between the dijet kinematics and the magnitude of the UE in the forward region in **p+p collisions**
- **Motivation**: modeling of particle production, reference measurement to **better understand the centrality in p+Pb**

(a) \(p+Pb \) collision

(b) \(pp \) collision

\[\Sigma E_T \]

\[p \quad x_{proj} \quad x_{targ} \quad \eta_1 = +1.5 \quad \eta_2 = +0.5 \]

\[\Sigma E_T \]

\[p \quad x_{proj} \quad x_{targ} \quad \eta_1 = +1.5 \quad \eta_2 = +0.5 \]

Main measurement:

\[<\Sigma E_T> \ vs \ p_T^{avg}, \eta^{dijet}, x_{targ}, \ x_{proj} \]
Dijet kinematic variables

- ΣE_T corrected to full hadronic scale using a dedicated calibration procedure using PYTHIA8, which accounts for a small offset stemming primarily from out-of-time pileup.

- Jets are reconstructed using anti-kt algorithm with $R=0.4$:
 - $p_{T1}>50$ GeV, $p_{T2}>20$ GeV, $p^{avg}_{T}>50$ GeV
 - $\eta_1 < 3.2$ to match acceptance of jet trigger
 - $\eta_1, \eta_2 > -2.8$ to avoid overlap with the FCal

- The kinematic variables:
 - average quantities for dijet measurements:
 \[
p^{avg}_{T} = (p_{T1} + p_{T2})/2 \quad \quad \quad \eta_{dijet} = (\eta_1 + \eta_2)/2
 \]
 - Bjorken x_{proj} and x_{targ} with the proton defined as the projectile:
 \[
x_{proj} = p^{avg}_{T} \frac{(e^{+\eta_1} + e^{+\eta_2})}{\sqrt{s}}
 \]
 \[
x_{targ} = p^{avg}_{T} \frac{(e^{-\eta_1} + e^{-\eta_2})}{\sqrt{s}}
 \]
Energy production

- Steady decrease with increasing p_{T}^{avg}
- Generators have similar antycorrelation, but vary in overall magnitude
Energy production

ATLAS Preliminary

pp, $\sqrt{s} = 2.76$ TeV

- Steady decrease with increasing p_T^{avg}
- Generators have similar antycorrelation, but vary in overall magnitude
Anti-correlation is stronger when \(\eta_{\text{dijet}} \) approaches the \(\Sigma E_T \) measuring region.

This can be evaluated as a function of \(x_{\text{targ}} \) and \(x_{\text{proj}} \) (~ Bjorken x).
x_{proj} and x_{targ}

ATLAS Preliminary

pp, \sqrt{s} = 2.76 TeV

\langle \Sigma E_T \rangle^\text{ref} = \langle \Sigma E_T \rangle(\rho_T^{\text{avg}} \in 50-63 \text{ GeV}, |\eta_{\text{dijet}}| < 0.3)

- Small (10%) drop in \Sigma E_T ratio with \text{x}_{proj}
- Over a factor of two drop in \Sigma E_T ratio with \text{x}_{targ}
- Generators show qualitatively similar behavior
• In pp collisions, $<\sum E_T>$ falls with x_{targ}, mostly insensitive to x_{proj}
• Effects seen in p+Pb jets are not due to trivial anti-correlation in individual nucleon-nucleon collisions (e.g. “energy conservation”)
Conclusion

• ATLAS measurements of the centrality dependence of the charged particle pseudorapidity distribution, $dN_{\text{ch}}/d\eta$ shows:
 – Significant asymmetry in the rapidity
 – Centrality dependence of $dN_{\text{ch}}/d\eta/(<N_{\text{part}}>/2)$ is sensitive to the model used for centrality determination
 – Comparison to Z-bosons show intriguing similarities between $p+Pb$ observables, and very good consistency with N_{part} and N_{coll} scaling

• Presented a measurement of correlation of the underlying event in the backwards region with hard scattering kinematic variables :
 – $<\Sigma E_T>$ is strongly correlated with x_{targ}, but only weakly with x_{proj}
 – The results indicate that the $p+Pb$ jet effect is not a trivial energy conservation
Thank You!
Back Up Slides
pPb interactions produce an additional coherent and photo-nuclear component of events consistent with the excitation of the proton.

- Full coverage $|\eta| < 4.9$ divided into $\Delta \eta = 0.2$ intervals.
- Occupied interval contains reconstructed tracks or calorimeter clusters with $p_T > 200$ MeV.
- $\Delta \eta_{\text{Pb _ gap}} = \Sigma \Delta \eta_{\text{Pb}}$ Empty interval.
- Electromagnetic or diffractive excitation of the proton typically produce $\Delta \eta_{\text{Pb _ gap}} > 2$ ($f_{_ gap} = 6\%$).

Pb-side empty event illustration.
Glauber and Glauber-Gribov models

To model Npart distribution we used:
- standard Glauber with σ_{NN} cross section = 70±5mb
- Glauber-Gribov color fluctuation models, with $<\sigma_{NN}>$ cross section = 70±5mb

In Glauber-Gribov model:
- σ_{tot} is considered frozen for each event
- parameter Ω controls the amount of fluctuations
- Ω is extracted from experimental data: 0.55 [PLB633 (2006) 245–252] and 1.01 [PLB722 (2013) 347–354]
Constructing FCal ΣE_T^{Pb} response

E_T distribution modeled by PYTHIA simulated taking into account FCal response in p+Pb configuration and were approximated by Gamma(k, θ) distributions.

Convoluted of N_{part} Gamma(k, θ) was taken as Gamma($k(N_{\text{part}}), \theta(N_{\text{part}})$)

We allowed:

$k(N_{\text{part}}) = k_0 + k_1 \times (N_{\text{part}} - 2)$;

$\theta(N_{\text{part}}) = \theta_0 + \theta_1 \times (\log(N_{\text{part}} - 1))$;

N_{part} was weighted according to Glauber or Glauber-Gribov model and fitted to the data.
dN_{evt}/dE_T obtained by summing the gamma distributions over different N_{part} values weighted by P(N_{part})

Fits to the measured E^{Pb}_T distributions show reasonable agreement over 3 orders of magnitude in E_T distribution.
- Results produced with models are different
- Standard Glauber has highest fluctuations of produced E_T per participant
- Glauber-Gribov $\Omega = 1.01$ has less E_T fluctuation and therefore gives highest N_{part}
Multiplicty reconstruction methods

- Method 1 is chosen as the default result for \(dN_{\text{ch}}/d\eta \)
- Method 2 is used for systematic uncertainties
- Pixel track method is used primarily as a consistency test
- The correction factor is evaluated as a function of occupancy (O), event vertex (\(z_{\text{vtx}} \)), and \(\eta \) as:

\[
C(O, z_{\text{vtx}}, \eta) \equiv \frac{N_{\text{pr}}(O, z_{\text{vtx}}, \eta)}{N_{\text{rec}}(O, z_{\text{vtx}}, \eta)}
\]

\[
\frac{dN_{\text{ch}}}{d\eta} = \frac{1}{\Delta\eta} \sum \frac{\Delta N_{\text{tr}}(O, z_{\text{vtx}}, \eta) C(O, z_{\text{vtx}}, \eta)}{\sum N_{\text{evt}}(z_{\text{vtx}})}
\]

![Graphs and plots showing multiplicity reconstruction methods for ATLAS, Simulation p+Pb, \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \), \(y_{\text{cm}} = 0.465 \).](image)

\(\frac{dN_{ch}}{d\eta} \) vs alternate centrality

- **ATLAS**
 - \(p+Pb, 1 \mu b^{-1} \)
 - \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
 - \(y_{cm} = 0.465 \)

- Details for different centralities:
 - 0-1%, \(\Sigma E_T^{3.6<\eta_{cm}<4.4} \)
 - 60-90%, \(\Sigma E_T^{3.6<\eta_{cm}<4.4} \)
 - 0-1%, \(\Sigma E_T^{\eta<-4} \)
 - 60-90%, \(\Sigma E_T^{\eta<-4} \)

- Only up to 4% difference

[arXiv:1508.00848]
Z-candidates

- Electrons
 - Trigger e: $E_T > 20$ GeV, $|\eta| < 2.47$
 - Second e: $E_T > 10$ GeV, $|\eta| < 2.47$
 - Forward e: $E_T > 20$ GeV, $2.5 < |\eta| < 4.9$

Select candidates with:
- 66 < m_{ee} < 116 GeV
- 80 < m_{ee} < 100 GeV

- Muons
 - Trigger μ: $p_T > 20$ GeV, $|\eta| < 2.4$
 - Second μ: $p_T > 10$ GeV, $|\eta| < 2.47$

Select candidates with 66 < $m_{\mu\mu}$ < 116 GeV

- To further investigate $dN_{ch}/d\eta$ scaling with N_{part} Z-bosons can be used
Z-production

$\sqrt{s_{\text{NN}}} = 5.02$ TeV

$\text{p+Pb 2013, } L_{\text{int}} = 29 \text{ nb}^{-1}$

- Fit represents $<N_{\text{coll}}>/<N_{\text{part}}>$
- Agreement in the geometric scaling
- Reflecting initial state conditions of the nucleus

ATLAS

E Shulga

The XXVth International Conference on Nucleus-Nucleus Collisions
Rapidity Differential Cross-Section

ATLAS

\(p+Pb \ 2013, \ L_{int} = 29 \text{ nb}^{-1} \)
\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

- Excellent agreement between channels
- \(y_Z^* \) asymmetry observed in the data
- Significant excess at backward rapidity

Data / MSTW2008 (NNLO)

Data / CT10+EPS09 (NLO)

Data / CT10 (NLO)
p+Pb @ LHC and ATLAS

\[y_{CM} = -0.465 \]

ATLAS C side \(\eta < 0 \)

1.57 TeV/N

ATLAS A side \(\eta > 0 \)

4 TeV
Inner Detector is used for $dN_{ch}/d\eta$ within $|\eta| < 2.7$
Minimum Bias Scintillators used for the event selection $2.1 < |\eta| < 3.9$ (not shown here)
Calorimeters:

- for the electron, jet reconstruction;
- diffractive contribution studies $|\eta|<4.9$
LAr forward (FCal)
Used for the centrality determination
3.2<|\eta|<4.9 (only Pb-going direction)