The XXVth International Conference on Nucleus-Nucleus Collisions

Centrality dependence of low-p_T and high-p_T particle production in proton-lead collisions with ATLAS

Evgeny Shulga for the ATLAS Collaboration

Introduction

p+A collisions at the LHC provide an opportunity to study the physics of the initial-state of ultra-relativistic A+A collisions

p+A multiplicity measurements:

 dN_{ch}/dη – the most basic experimental probe which as a function of centrality can provide understanding of p+A interactions

Z-boson production:

 Clean probe to better understand p+Pb particle production scaling properties and underlying nature of the collision

pp dijet measurements:

 provide a tool to test how underlying event activity correlates with hard scattering kinematics in p+Pb interactions

ATLAS detector

Convention: $y^*=y_{CM}=0.465 > 0$ is proton-going

The XXVth International Conference on Nucleus-Nucleus Collisions

E Shulga

Data

- Multiplicity analysis:
 - 2012 p+Pb pilot run is used for the measurements:
 Integrated Luminosity: 1 μb⁻¹
- Z-boson production analysis:
 - 29.1 ± 1.0 nb⁻¹ for Z→ee
 - 27.8 ± 0.9 nb⁻¹ for Z→μµ

- Dijet analysis:
 - pp at 2.76 TeV collisions (2013) with integrated luminosity of 4 pb⁻¹
- Centrality:
 - Pb-going Fcal is used to characterize event centrality
 - Gribov extension is evaluated for the centrality estimations

Centrality and Multiplicity in p+Pb

Multiplicity reconstruction methods

[arXiv:1508.00848]

Pixel tracks:

- |η|<2.5
- provide p_T of the particle
- used to reweight HIJING -> Data

Pixel track method is used primarily as a consistency test

 $|\Delta\eta| < 0.015, |\Delta\varphi| < 0.1, |\Delta\eta| < |\Delta\varphi|$

Method 1: tracklet = Vertex + 2 hits/clusters (3 layers)

- is chosen as the default result for $dN_{ch}/d\eta$

Method 2: tracklet = Vertex + 2 hits/clusters (2 layers)

• is used for systematic uncertainties

$dN/d\eta$ for different centralities

• $dN_{ch}/d\eta$ is measured for $|\eta| < 2.7$ in eight centrality intervals

 Forward backward asymmetry between p and Pb going directions grows with centrality

E Shulga

dN/dη per pair of participants

[arXiv:1508.00848]

To further investigate dN_{ch}/dη scaling with N_{part} Z-bosons can be used

- Standard Glauber, used up to now shows increase with <N_{part}>
- GGCF with ω_{σ} =0.11 is almost flat with ω_{σ} =0.2 even decreases

E Shulga

- Similar shape of charged multiplicity and Z-yield
- Agreement in the geometric scaling \rightarrow reflecting initial state conditions of the nucleus E Shulga

Z-production

- Fit represents <N_{coll}>/<N_{part}>
- Agreement in the geometric scaling
- → reflecting initial state conditions of the nucleus

E Shulga

Centrality and Jets in p+Pb: switching to even higher p_T

Jet R_{pPb}

- While the $R_{\rm pPb}$ is consistent with unity when evaluated inclusively in centrality, it is not unity when evaluated differentially in centrality

- R_{CP}/R_{pPb} scales with the total momentum of a jet for jets in the positive forward region suggesting a dependence on x of parton in proton.
- How much of the centrality dependence (= dependence on ΣE_T in the negative forward region) comes from the dependence of ΣE_T on x in proton for individual NN collision?

pp and p+Pb

- What is measured: correlation between the dijet kinematics and the magnitude of the UE in the forward region in p+p collisions
- Motivation: modeling of particle production, reference measurement to better understand the centrality in p+Pb

(a) p+Pb collision

(b) pp collision

Dijet kinematic variables

- ΣE_T corrected to full hadronic scale using a dedicated calibration procedure using PYTHIA8, which accounts for a small offset stemming primarily from out-of-time pileup
- Jets are reconstructed using anti-kt algorithm with R=0.4:
 - p_{T1}>50 GeV, p_{T2}>20 GeV, p^{avg}_T >50 GeV
 - $\eta_1 < 3.2$ to match acceptance of jet trigger
 - η_1 , η_2 > -2.8 to avoid overlap with the FCal
- The kinematic variables:
 - average quantities for dijet measurements: $p_T^{\text{avg}} \approx (p_{\overline{T}}^{\text{avg}} p_{\overline{T}}^{\text{avg}})/d$ $p_T^{\text{avg}} \approx (p_{\overline{T}}^{\text{avg}} p_{\overline{T}})/2$
 - Bjorken x_{proj} and x_{targ} with the proton defined as the projectile: y = 0, y = 1, 1, $avg(e^{+\eta_1} + e^{+\eta_2})/\sqrt{s}$) at the heat, by $\theta_r + \eta_1 + e^{+\eta_2}/\sqrt{s}$ y = 0, the jets y = 0, y = 1, y = 1,

Energy production ATLAS-CONF-2015-019

- Steady decrease with increasing p_T^{avg}
- Generators have similar antycorrelation, but vary in overall magnitude

E Shulga

Energy production

- Steady decrease with increasing p_T^{avg}
- Generators have similar antycorrelation, but vary in overall magnitude

E Shulga

η^{dijet} dependence ATLAS-CONF-2015-019</sup>

- Anti-correlation is stronger when η^{dijet} approaches the ΣE_T measuring region
- This can be evaluated as a function of x_{targ} and x_{proj} (~ Bjorken x)

E Shulga

- Small (10%) drop in ΣE_T ratio with x_{proj}
 Over a factor of two drop in ΣE_T ratio with x_{targ}
- Generators show qualitatively similar behavior

E Shulga

 Effects seen in p+Pb jets are not due to trivial anti-correlation in individual nucleon-nucleon collisions (e.g. "energy conservation")

Conclusion

- ATLAS measurements of the centrality dependence of the charged particle pseudorapidity distribution, dN_{ch}/dη shows:
 - Significant asymmetry in the rapidity
 - Centrality dependence of dN_{ch}/dη/(<Npart>/2) is sensitive to the model used for cenrality determination
 - Comparison to Z-bosons show intriguing similarities between p +Pb observables, and very good consistency with N_{part} and N_{coll} scaling
- Presented a measurement of correlation of the underlying event in the backwards region with hard scattering kinematic variables :
 - $<\Sigma E_T >$ is strongly correlated with x_{targ} , but only weakly with x_{proj}
 - The results indicate that the p+Pb jet effect is not a trivial energy conservation

Thank You!

Back Up Slides

Removal of events with large η gaps

• pPb interactions produce an additional coherent and photo-nuclear component of events consistent with the excitation of the proton

- Full coverage $|\eta| < 4.9$ divided into $\Delta \eta = 0.2$ intervals
- Occupied interval , contains reconstructed tracks or calorimeter clusters with $p_T > 200 \text{ MeV}$

$$\Delta \eta^{Pb}_{gap} = \Sigma \Delta \eta^{Pb}_{Empty interval}$$

• Electromagnetic or diffractive excitation of the proton typically produce $\Delta \eta^{Pb}_{gap} > 2$ (f_{gap} = 6%)

Glauber and Glauber-Gribov models

To model Npart distribution we used:

- standard Glauber with σ_{NN} cross section = 70±5mb
- Glauber-Gribov color fluctuation models, with $\langle \sigma_{NN} \rangle$ cross section = 70±5mb

In Glauber-Gribov model:

- $\sigma_{\scriptscriptstyle tot}$ is considered frozen for each event
- parameter Ω controls the amount of fluctuations
- Ω is extracted from experimental data: 0.55 [PLB633 (2006) 245– • $25p_{H}^{2} a_{0} d_{\rho} \frac{1.0^{1}}{1.0^{1}} \left[P_{exp} \frac{722\omega(20+3)^{2}}{0^{2}} \right] 47 - 354]_{P_{H}(\sigma_{NN})} = \frac{1}{\lambda} P(\sigma_{NN}/\lambda)$ $\sigma_{\rm tot} + \sigma_0$ $P(N_{part})$ $^{\rm H}_{\rm H}(\sigma_{\rm NN})$ [mp₋₁] ATLAS Simulation 0.01 10⁻¹ 10⁻² 50 100 150 $\sigma_{\rm NN}$ [mb]

Constructing FCal ΣE_T^{Pb} response

 E_T distribution modeled by PYTHIA simulated taking into account FCal response in p+Pb configuration and were approximated by Gamma(k, θ)

Convolution of N_{part} Gamma(k, θ) was taken as Gamma(k(N_{part}), θ (N_{part}))

We allowed: θ₀+θ₁*(log(N_{part}-1)); In WN :

$$k(N_{part}) = k_0 + k_1 * (N_{part} - 2); \qquad \theta(N_{part}) = k(N_{part}) = k * N_{part}; \qquad \theta(N_{part}) = \theta;$$

E_T response for N_{part} was weigthed according to Glauber or Glauber-Gribov model and fitted to the data The XXVth International Conference on Nucleus-Nucleus Collisions 26

FCal E_T distribution fits

dN_{evt}/dE_T obtained by summing the gamma distributions over different N_{part} values weighted by P(N_{part})

Fits to the measured E^{Pb}_{T} distributions show reasonable agreement over 3 orders of magnitude in E_{T} distribution.

N_{part} for different Glauber models 30 $\langle N_{\sf part}$ ATLAS Simulation p+Pb, 1 μ b⁻¹, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV 25 20 15 **** 10 Glauber GGCF $\omega_{\sigma} = 0.11$ 5 GGCF $\omega_{\sigma} = 0.2$ 0 $60_{-90\%}$ $40_{-60\%}$ $30_{-40\%}$ $20_{-30\%}$ $10_{-20\%}$ $5_{-10\%}$ $1_{-5\%}$ $0_{-1\%}$ $0_{-90\%}$

- Results produced with models are different
- Standard Glauber has highest fluctuations of produced E_T per participant
- E @lauber-Gribov 2041.01 has fesse Erefluctuation and therefore gives 28

Centrality

Multiplicity reconstruction methods

- Method 1 is chosen as the default result for $dN_{ch}/d\eta$
- Method 2 is used for systematic uncertainties
- Pixel track method is used primarily as a consistency test
- The correction factor is evaluated as a function of occupancy (O), event vertex (z_{vtx}), and η as:

Only up to 4% difference

E Shulga

Z-candidates

E Shulga

- Fit represents <N_{coll}>/<N_{part}>
- Agreement in the geometric scaling
- ➔ reflecting initial state conditions of the nucleus

E Shulga

Rapidity Differential Cross-Section

CERN-PH-EP-2015-146 [arXiv:1507.06232]

p+Pb @ LHC and ATLAS

p+Pb @ LHC and ATLAS

p+Pb @ LHC and ATLAS

