Quark Matter 2015 - XXV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Contribution ID: 654 Type: Poster

Centrality dependence of photon anisotropic flow at RHIC

Tuesday, 29 September 2015 16:30 (2 hours)

We calculate elliptic and triangular flow of thermal photons for different collision centralities at RHIC using event—by-event hydrodynamic model with fluctuating initial conditions. Photon v_3 as a function of p_T calculated with respect to the participant plane angle is found to be comparable to the elliptic flow parameter $v_2(p_T)$ for 0—20% centrality bin at RHIC. However, $v_2(p_T)$ rises much faster than $v_3(p_T)$ towards peripheral collisions and $v_3(p_T)$ is found to be largest for 20—40% centrality bin.

We study the event-by-event distributions of v_2 and v_3 and their corresponding initial state anisotropies to understand the correlation between them. A significant linear correlation between v_2 and ϵ_2 is observed at different p_T values, however we do not see any correlation between photon v_3 and the initial triangularity ϵ_3 . This is unlike the case of hadrons where a clear mapping between hadronic v_3 and ϵ_3 has been observed. We conclude that indirect effects of initial state fluctuations, such as buildup of large transverse flow velocity contribute significantly to the observed v_3 results beyond leading to an overall triangular geometry.

On behalf of collaboration:

NONE

Primary author: CHATTERJEE, Rupa

Co-authors: SRIVASTAVA, Dinesh (Variable Energy Cyclotron Centre, Kolkata); Mr DASGUPTA, Pingal (Variable Energy Cyclotron Centre); Mr DASGUPTA, P

able Energy Cyclotron Centre)

Presenter: CHATTERJEE, Rupa

Session Classification: Poster Session

Track Classification: Electromagnetic Probes