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Motivation and Conclusions

Relativistic second order dissipative fluid dynamics is a very important
scientific achievement of the last decade, and has inspired many authors
to apply its methodology to the study of heavy ion collisions and
astrophysics. In short it furnishes equations which are closed by
imposing the entropy principle up to second order, with respect to
equilibrium.

We have so far refrained from exploiting subsequent orders because that
requires long and cumbersome calculations

However, the exploitation of subsequent orders with respect to
equilibrium is desirable, for the following tthree reasons
(i) a second order approach is necessary to link more closely the
relativistic case with the classical one
(ii) the higher order terms depends also on the lower order terms; so it
might happen that the existing condition of the solution imposes further
conditions on the lower order terms and it may also happen that the
further conditions affect the equilibrium expressions which, however, are
already known.
(iii) the couplings between the three primary processes in dissipative
fluids are only realized by going up to third order
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Basics & Formalism

The objective of relativistic dissipative fluid dynamics for one component fluid
is the determination of the 14 fields of

Nµ(xβ) net charge density — net charge flux vector

Tµν(xβ) stress — energy — momentum tensor

Tµν is assumed symmetric so that it has 10 independent components.

The 14 fields are determined from the field equations (fluid dynamical
equations)

∂µNµ = 0 net charge (e.g., baryon, strangeness, etc ) conservation

∂νTµν = 0 energy – momentum conservation

∂λFµνλ = Pµν balance law of fluxes

Fµνλ is completely symmetric tensor of fluxes and Pµν is its production
density such that

Fµνν = m2Nµ and Pνν = 0
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Basics & Formulation

We then have a set of 14 independent equations ( net charge conservation
(1); energy-momentum conservation (4); balance of fluxes (9))

However, the dynamic equations cannot serve as the field equations for the
thermodynamic fields Nµ and Tµν . Because the additional fields Fµνλ and
Pµν have appeared.

Restriction on the general form of the constitutive functions Fµνλ(Nα,Tαβ)
and Pµν(Nα,Tαβ) is imposed by

entropy principle —the entropy density–entropy flux vector Sµ(Nα,Tαβ)
is a constitutive quantity which obeys the inequality

∂µSµ ≥ 0 for all thermodynamic process

requirement of hyperbolicity — ensures that Cauchy problems of our
field equations are well-posed and all wave speeds are finite =⇒ our set
of field equations should be symmetric hyperbolic
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The 14 Fields and Tensor decomposition

Net charge 4-current Nµ = nuµ

n ≡
p

NµNµ = uµNµ net charge density in fluid rest frame,

uµ ≡ Nµ

√
NνNν

the fluid 4-velocity,

uνuν = 1 =⇒ uµ has 3 independent components
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14 Fields and Tensor decomposition

Stress–energy–momentum tensor Tµν = εuµuν−(p+Π)∆µν+2q(µuν)+π〈µν〉

ε ≡ uµuνTµν energy density in fluid rest frame,

p ≡ p(ε , n) pressure in fluid rest frame,

Π bulk viscous pressure, (p + Π) ≡ −1
3

∆µνTµν

∆µν ≡ gµν − uµuν projection tensor onto 3-space, ∆µνuν = ∆µνuµ = 0

gµν ≡ diag(+1,−1,−1,−1) metric tensor

qµ ≡ ∆µ
αuβTαβ heat flux 4-current,

qµuµ = 0 =⇒ qµ has 3 independent components

π〈µν〉 ≡ T 〈µν〉 shear stress tensor

π〈µν〉uµ = π〈µν〉uν = 0, π
〈ν
ν〉 = 0 =⇒ π〈µν〉 has 5 independent components

Azwinndini Muronga Third order relativistic dissipative fluid dynamics Quark Matter 2015 7 / 24



14 Fields and Tensor decomposition

Production densities tensor Pµν = PΠΠ
“

∆µν−3uµuν
”

+2Pqq(µuν)+Pππ〈µν〉

The functions PΠ, Pq , Pπ are related to the bulk viscosity, heat conductivity
and shear viscosity and thus may be determined from measurements of
these coefficients
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14 Fields and Tensor decomposition

Tensor of fluxes (up to 2nd order)

Fµνλ =
1
2
F0

1 g(µνuλ) +
1
2
F0

2

“
g(µνuλ) − 2uµuνuλ

”
+F1

1 Π
“

∆(µνuλ) − uµuνuλ
”

+ F1
2

“
∆(µνqλ) − 5u(µuνqλ)

”
+F1

3π
(〈µν〉uλ)

+F2
1 Π2

“
∆(µνuλ) − uµuνuλ

”
+ F2

2

“
−qνqν∆(µνuλ) − 3u(µqνqλ)

”
−F2

3 qαqα
“

∆(µνuλ) − uµuνuλ
”

+ F2
4

“
3uµπ2〈νλ〉 − π2〈αα〉uµuνuλ

”
+F2

5π
2〈αα〉

“
∆(µνuλ) − uµuνuλ

”
+ F2

6

“
q(µπ〈νλ〉) − 2u(µuνπ〈λ)ν〉qν

”
+F2

7

“
∆(µνπ〈λ)α〉)qα − 5uµuνπ〈λ)α〉qα

”
+ F2

8 Πu(µπ〈νλ〉)

+F2
9 Π
“

∆(µνqλ) − 5q(µuνuλ)
”

Zeroth order (Equilibrium) + First order + Second order
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14 Fields and Tensor decomposition

Entropy 4-current (up to 3rd order)

Sµ = S0
1 uµ

+S1
1 Πuµ + S1

2 qµ

+
“
S2

1 Π2 − S2
2 qαqα + S2

3π
2〈αα〉

”
uµ

+S2
4 Πqµ + S2

5π
〈µα〉qα

+
“
S3

1 Π3 − S3
2 Πqαqα + S3

3 Ππ2〈αα〉 + S3
4 qαqβπ〈αβ〉 + S3

5π
3〈αα〉

”
uµ

+
“
S3

6 Π2 − S3
7 qαqα + S3

8π
2〈αα〉

”
qµ + S3

9 Ππ〈µα〉qα + S3
10π

2〈µα〉qα

Zeroth order (Equilibrium) + First order + Second order +Third order
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Notation

Parentheses around some indices denote symmetrization, while angular
brackets around two indices denote skew-symmetrization

a(µν) ≡ 1
2

“
aµν + aνµ

”
a〈µν〉 ≡

“
∆(µ
α ∆

ν)
β −

1
3

∆µν∆αβ

”
aαβ

The space-time derivative will be split into time and spatial components as
follows

∂µ ≡ uµD +∇µ

with D ≡ uα∂α convective (comoving) time derivative
and ∇µ ≡ ∆µν∂ν spatial gradient

ȧ... ≡ Da... = uµ∂µa... convective (comoving) time derivative of a...

θ = ∇µuµ = ∂µuµ expansion scalar (divergence of 4-velocity)
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Equilibrium

Equilibrium is defined as a process in which production densities vanish
and/or the entropy production vanishes

PµνEq. = 0
ΞEq. = 0

ff
=⇒ ΠEq. = 0 , qµEq = 0 , π

〈µν〉
Eq = 0

FµνλEq =
1
2
F0

1 g(µνuλ) +
1
2
F0

2

“
g(µνuλ) − 2uµuνuλ

”
SµEq. = s(ε, n)uµ

The energy-momentum tensor reduces to

TµνEq. = εuµuν − p∆µν

In the ideal “perfect” fluid limit one has 5 independent fields
(p(n, e)(2), uµ(3)) and 5 field equations
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14-Fields Theory of Relativistic Dissipative Fluid Dynamics :

In dissipative(non-ideal) fluid dynamics one needs 9 additional equations for
the dissipative fluxes. The 14 fields p(n , ε), Π, uα, qα, π〈αβ〉 are governed by
the following fields equations

∂µNµ = 0

∆αµ∂νTµν = 0

uµ∂νTµν = 0

uµuν∂λFµνλ = −PΠΠ

∆µ
αuν∂λFανλ = Pqqµ“

∆(µ
α ∆

ν)
β −

1
3

∆µν∆αβ

”
∂λFαβλ = Pππ〈µν〉

For all thermodynamic processes the entropy principle holds

∂µSµ ≥ 0
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Dissipative fluxes: Zeroth order: Equilibrium

Π = ΠEq. = 0

qα = qαEq. = 0

π〈αβ〉 = π
〈αβ〉
Eq. = 0
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Dissipative fluxes: First order

Π(1) = ΠE = −ζ∇αuα

qα (1) = qαE = κT ∆αµ
“∇αT

T
− u̇α

”
π〈αβ〉 (1) = π

〈αβ〉
E = 2η∆αµ∆βν∇〈αuβ〉

Relativistic versions of the laws of Navier-Stokes and Fourier
first derived by Eckart, Landau-Lifshitz.
ζ is the bulk viscosity, κ is the thermal conductivity, η is the shear viscosity

simple algebraic expressions of dissipative fluxes

may lead to acausal and unstable equations of motion
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Dissipative fluxes: Second order

Müller-Israel-Stewart (MIS) equations: Fµνλ linear (first-order) in dissipative
fluxes and Sµ quadratic (second-order) in dissipative fluxes
Resulting equations causal and hyperbolic

Π(2) = ΠMIS = −ζ
h
2S2

1 Π̇ + S2
4∇αqα

i
−ζ
h
Π(Ṡ2

1 + S2
1∇αuα) + qα(∇αS2

4 − S2
4 u̇α)

i
qµ (2) = qµMIS = κT ∆αµ

h
2S2

2 q̇α + S2
4∇αΠ + S2

5∇βπ〈αβ〉
i

+κT ∆αµ
h
qα(Ṡ2

2 + S2
2∇νuν) + Π(∇αS2

4 − S2
4 u̇α)

+π〈αβ〉(∇βS2
5 − S2

5 u̇β)
i

π〈µν〉 (2) = π
〈µν〉
MIS = 2η∆αµ∆βν

h
2S2

3 π̇〈αβ〉 + S2
5∇〈αqβ〉

i
+2η∆αµ∆βν

h
π〈αβ〉(Ṡ2

3 + S2
3∇λuλ)

+q〈α(∇β〉S2
5 − S2

5 u̇β〉)
i
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Dissipative fluxes

The terms in red are neglected in the original MIS formulation. Terms of
the general form Π∂νuµ, Π∂λn, Π∂λε, qα∂νuµ, qα∂λn, qα∂λε, π〈αβ〉∂νuµ,
π〈αβ〉∂λn, π〈αβ〉∂λε have been considered non-linear and thus ignored.
These terms have been shown to be important in heavy ion collisions.
They will be even more important at low energies and high densities.

Derivations of the equations from kinetic theory reveals terms that are
not explicit from phenomenological considerations (e.g., vorticity terms)
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Dissipative fluxes: Third order: Bulk equation

Π(3) = −ζ
h
3S3

1 Π̇ + 2S3
2 q̇λqλ + 2S3

3 π̇〈αβ〉π
〈αβ〉

+S3
6 (Π∇αqα + qα∇αΠ) + S3

9 (π〈αβ〉∇αqβ + qβ∇απ〈αβ〉)
i

−ζ
h
Π2(Ṡ3

1 + S3
1∇αuα)− qαqα(Ṡ3

2 + S3
2∇αuα)

+π2〈αβ〉(Ṡ3
3 + S3

3∇αuα)

+Πqα(∇αS3
6 − S3

6 aα) + π〈αβ〉qβ(∇αS3
9 − S3

9 aα)
i
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Dissipative fluxes: Third order: Heat equation

qµ (3) = κT ∆αµ
h
−S3

2 (2Πq̇α + qαΠ̇) + S3
4 (2q̇βπ〈αβ〉 + qβ π̇〈αβ〉)

+2S3
6 Π∇αΠ− 2S3

7 qβ∇αqβ + S3
9 (Π∇βπ〈αβ〉 + π〈αβ〉∇βΠ)

+2S3
10π〈βν〉∇απ〈βν〉

i
+κT ∆αµ

h
Πqα(Ṡ3

2 + S3
2∇νuν) + qβπ〈αβ〉(Ṡ3

4 + S3
4∇νuν)

+(Π2∇αS3
6 − qλqλ∇αS3

7 + π2〈λλ〉∇αS3
8 )

+Ππ〈αβ〉(∇βS3
9 − S3

9 aβ) + π2
〈αβ〉(∇βS3

10 − S3
10aβ)

+S3
7 qαqλaλ

i
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Dissipative fluxes: Third order: Shear equation

π〈µν〉 (3) = 2η∆αµ∆βν
h
S3

3 (2Ππ̇〈αβ〉 + π〈αβ〉Π̇) + 2S3
4 q̇〈αqβ〉

+3S3
5 π̇〈αλ〉π

〈λ
β〉 + S3

8π〈αβ〉∇λqλ + S3
9 (Π∇〈αqβ〉 + q〈α∇β〉Π)

+S3
10(q(β∇λπ〈α)λ〉 + π〈λ(α〉∇λqβ)

i
+2η∆αµ∆βν

h
Ππ〈αβ〉(Ṡ3

3 + S3
3∇λuλ)

+q〈αqβ〉(Ṡ3
4 + S3

4∇λuλ) + π〈αλ〉π
〈λ
β〉(Ṡ

3
5 + S3

5∇λuλ)

+π〈αβ〉q
λ(∇λS3

8 − S3
8 aλ) + Πq〈β(∇α〉S3

9 − S3
9 aα〉)

+π〈αλqλ(∇β〉S3
10 − S3

10aβ〉)
i

Azwinndini Muronga Third order relativistic dissipative fluid dynamics Quark Matter 2015 20 / 24



Entropy from Kinetic Theory

We derive the third order entropy 4-current as well the non-classical
coefficients by going beyond Israel-Stewart entropy 4-current expression in
kinetic theory. The kinetic expression for entropy, can be written as

Sµ = −
Z

dwpµψ[f (x , p)] ,

where

ψ[f (x , p)] = f (x , p)
n

ln[A−1
0 f (x , p)]− 1

o
,

and f (x , p) is the out of the equilibrium distribution function. Expanding ψ(f )
around ψ(f eq) up to third order we get,

ψ(f ) = ψ(f eq) + ψ′(f eq)(f − f eq) +
1
2
ψ′′(f eq)(f − f eq)2

+
1
6
ψ′′′(f eq)(f − f eq)3 + .. ,
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Entropy from kinetic theory

Sµ(1) =
qµ

T
,

Sµ(2) =
1
2
βuµ

h
S2

1 Π2 − S2
2 qαqα + S2

3π
ναπνα

i
+ β

h
S2

4 qµΠ + S2
5 qαπµα

i
,

Sµ(3) =
1
6
βuµ

n
S3

1 Π3 + S3
2 Πqαqα + S3

3 Ππναπνα + S3
4 qνqαπνα + S3

5πναπ
ν
βπ

αβ
o

−1
6
βqµ

n
S3

6 Π2 + S3
7 qαqα − S3

8π
ναπνα

o
− βS3

9 Πqαπµα

+
1
2
βS3

10qαπναπµν ,
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Third order coefficients

As function of m/T in the large temperature limit

S2
1 = ∞
S2

2 = 5
4p

S2
3 = 3

4p

S2
4 = ∞
S2

5 = 1
4p

9>>>>>=>>>>>;
=⇒ Second order coefficients known

Third order coefficients

S3
1 = ∞, S3

2 =∞, S3
3 =∞

S3
4 = 6

p2 , S3
5 = 3

4p2 =
S2

3
p , S

3
6 =∞

S3
7 = 2

p2 = 2S
2
2

p , S
3
8 = 27

32p2 , S3
9 =∞

S3
10 = 9

32p2
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Conclusions

For a one component fluid there are three main mechanisms for entropy
production. One is related to the dynamic preassure, one due to heat
flux and one due to shear stress.

For the entropy production to be non-negative the coefficients related to
bulk viscosity, shear viscosity and heat flux must satisfy some inequality
relations.

Third order relativistic fluid dynamics reveals the couplings and
relaxation times that are not present up to second order

The many identities one encounter in deriving the equations implies that
perhaps it is possible to constrain the lower order known functions such
as the equation of state and the transport, relaxation and coupling
coefficients

The equations presented here are the same whether derived via
divergence theory or kinetic theory

The relaxation and coupling coefficients are not new parameters - but
may be determined from the equation of state
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