

Study the particle transverse-momentum spectra at LHC with nonextensive statistics

Ming Shao, Zebo Tang and Zhangbu Xu

The hydrodynamics-inspired thermal approach - Blast-Wave (BW) model - implemented with non-equilibrium Tsallis statistics has gained increasing interest (and application) in high-energy heavy-ion physics. The transversemomentum spectra at LHC, from both p+p and Pb+Pb collisions, are systematically studied within the Tsallis Blast-Wave model. Good agreement between the data and the fit is achieved over a broad kinetic range, upto 10 GeV/*c* for p + p collisions from 200 to 7000 GeV, and upto 5 GeV/*c* for Pb+Pb collisions at 2.76 TeV. The kinetic freeze-out temperature *T*, the average radial flow velocity $\langle \beta \rangle$ and the parameter q, which is a measure of the degree of non-equilibrium of the system, are extracted from the fit. The evolution of these parameters with collision energy and centrality will be presented. A detailed fit to non-strange, single-strange and multi-strange particle species separately will be also given. Together with the observations at lower energy, the physics implication of the particle production during the fireball evolution in heavy-ion collisions will be discussed.

Blast-Wave Model	<u>Tsallis Statistics</u>	<u>Tsallis Blast-Wave Model</u>
 A Hydrodynamics-inspired model based on Boltzmann-Gibbs statistics Describes the p_T spectra of various particle species in heavy-ion collisions with a compact set of parameters (T, (B)) 	Tsallis Entropy: Generalization of the standard Boltzmann-Gibbs entropy introduced by Constantino Tsallis in 1988.	Implement the Tsallis statistics, generalization of the Boltzmann-Gibbs statistics, in the Blast-Wave model.
consists with a compact set of parameters $(T, (p))$	$\sum_{i=1}^{n} 1 - \sum_{i} p_{i}^{q} \qquad q \rightarrow 1 \qquad \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} C_{i}$	The single-particle spectrum can be written as:

 The TBW model describes the shape of the m_T spectra of more than 10 particle species over a broad m_T range of 0-10 GeV/c² with only 4 common parameters!

broad p_T range with only 3 common parameters!

- Grouping of baryons and mesons at high- m_T . Mesons and Baryons require different parameter q.
- No radial flow in p+p collisions at 200 GeV and 540 GeV. Spectra follow the m_T scaling.
- Significant radial flow velocity in p+p collisions at LHC energies. $\langle \beta \rangle = 0.264 \pm 0.005$ and 0.320 ± 0.005 for 900 GeV and 7000 GeV collisions, respectively.
- Comparable to 0.320 ± 0.005 in 40-60% Au+Au collisions at 200 GeV.
- Supported by the breaking of m_T scaling.

• Non-strange and single-strange particles has similar radial flow velocity, freezeout temperature and parameter q.

- Radial flow velocity increases with beam energy.
- Beam energy dependence of T and q-parameter is weak.
- Multi-strange particles:
 - Radial flow velocity: similar as non- and single-strange particles.
 - Freezeout temperature: significantly higher than non- and single-strange particles.
 significantly higher than at SPS and RHIC.
 - q-parameter: significantly lower than non- and single-strange particles.
 consistent with Boltzmann distribution in central and semi-central collisions.

<u>Summary:</u>

- Parameters of radial flow, temperature and q are extracted.
- Results in Pb+Pb at LHC follows the trend from SPS to RHIC.

NATIONAL LABORATORY

U.S. DEPARTMENT OF ENERGY

Office of