Are charmed mesons thermalized in heavy ion collisions at RHIC and LHC?

I.P. Lokhtin¹, A.V. Belyaev¹, G.Kh. Eyyubova^{1,2}, G. Ponimatkin³ and E.Yu. Pronina¹

¹ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ² FNSPE, Czech Technical University in Prague, Czech Republic ³ Ostrov Industrial High School, Ostrov, Karlovy Vary District, Czech Republic

event generator to simulate heavy ion event as merging of two independent components (**soft** hydro-type part + **hard** multi-partonic state); <u>http://cern.ch/lokhtin/hydjet++</u>

I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, K.Tywoniuk, Comp.Phys.Comm. 180 (2009) 779

Soft ("thermal")

The "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics with preset freeze-out conditions (the adapted generator FAST MC).

Hard ("non-thermal")

Fragmentation of medium-modified PYTHIA partonic state taking into account nuclear shadowing, multiple scattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma (based on PYQUEN model).

The RHIC and LHC data on various characteristics of charmed hadrons $(J/\psi \text{ and } D \text{ mesons})$ are analyzed and interpreted within two-component HYDJET++ model

RHIC, AuAu (a) $\sqrt{s_{NN}}=200$ GeV

J/ψ -mesons (y- and p_T -spectra)

If J/ψ 's are produced at the same freeze-out parameters as for inclusive (light) hadrons, then simulated spectra are much wider than the data.

If thermal freeze-out for J/ψ happens at the same temperature as chemical freeze-out (with reduced collective velocities), then simulated spectra match the data.

D-mesons (p_T-spectrum)

Charmed mesons at RHIC (summary)

Momentum spectra of D and J/ψ mesons in most central AuAu collisions may be reproduced (with the same freezeout parameters) by two-component model including thermal (soft) and non-thermal (hard) components. Thermal freeze-out of charmed mesons happens before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial and longitudinal collective velocities). Thus D and J/ψ mesons seem not to be in a kinetic equilibrium with the medium.

LHC, PbPb (a) $\sqrt{s_{NN}}=2.76$ TeV

D-mesons (p_T -spectrum, R_{AA} and v_2)

Points: ALLICE data, JHEP 1209 (2012) 112 (top) and PRC 90 (2014) 134904 (bottom); *Histograms: HYDJET++.*

If thermal freeze-out for J/ψ happens at the same temperature as chemical freeze-out (with reduced collective velocities), then simulated spectra match the data up to $p_T \sim 3 \text{ GeV/c}$. Elliptic flow $v_2 (p_T, N_{part})$ is reproduced well.

The simulated p_T -spectra and elliptic flow $v_2(p_T)$ of D with the same freeze-out parameters as for inclusive (light) hadrons match the data. Nuclear modification factor $R_{AA}(p_T)$ is reproduced at high p_T .

Charmed mesons at LHC (summary)

Momentum spectra and elliptic flow of D and J/ψ mesons in PbPb collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components. Thermal freeze-out of D-mesons happens simultaneously with thermal freeze-out of light hadrons; thermal freeze-out of J/ψ -mesons happens appreciably before,

