Are charmed mesons thermalized in heavy ion collisions at RHIC and LHC?

I.P. Lokhtin1, A.V. Belyaev1, G.Kh. Eyyubova1,2, G. Ponimatin2 and E.Yu. Pronina1

1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
2 FNSPE, Czech Technical University in Prague, Czech Republic
3 Ostrov Industrial High School, Ostrov, Karlovy Vary District, Czech Republic

HYDJET++

Event generator to simulate heavy ion event as merging of two independent components (soft hydro-type part + hard multi-partonic state); http://cern.ch/lokhtin/hydjet++

Soft (“thermal”)

The “thermal” hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics with preset freeze-out conditions (the adapted generator FAST MC).

Hard (“non-thermal”)

Fragmentation of medium-modified PYTHIA partonic state taking into account nuclear shadowing, multiple scattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma (based on PYQUEN model).

The RHIC and LHC data on various characteristics of charm hadrons (J/ψ and D mesons) are analyzed and interpreted within two-component HYDJET++ model.

J/ψ-mesons (y- and p_{T}-spectra)

Points: PHENIX data PRL 98 (2007) 232301; Histories: HYDJET++ (solid) = soft (dotted) + hard (dashed)

If J/ψ's are produced at the same freeze-out parameters as for inclusive (light) hadrons, then simulated spectra are much wider than the data.

If thermal freeze-out for J/ψ happens at the same temperature as chemical freeze-out (with reduced collective velocities), then simulated spectra match the data.

D-mesons (p_{T}-spectrum)

Points: STAR data PRL 113 (2014) 142301; Histories: HYDJET++

Simulated p_{T}-spectrum matches the data if freeze-out parameters for D are the same as for J/ψ.

Charmed mesons at RHIC (summary)

Momentum spectra of D and J/ψ mesons in most central AuAu collisions may be reproduced (with the same freeze-out parameters) by two-component model including thermal (soft) and non-thermal (hard) components. Thermal freeze-out of charmed mesons happens before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial and longitudinal collective velocities). Thus D and J/ψ mesons seem not to be in a kinetic equilibrium with the medium.

LHC, PbPb @ $\sqrt{s_{NN}}=2.76$ TeV

J/ψ-mesons (p_{T}-spectrum, R_{AA} and v_{2})

Points: ALICE data, arXiv:1506.08804 (top left), PHB 734 (214) 314 (top right), and PRL 113 (2014) 162301 (bottom); Histories: HYDJET++

If thermal freeze-out for J/ψ happens at the same temperature as chemical freeze-out (with reduced collective velocities), then simulated spectra match the data up to p_{T}~3 GeV/c. Elliptic flow $v_{2}(p_{T}, N_{part})$ is reproduced well.

D-mesons (p_{T}-spectrum, R_{AA} and v_{2})

Points: ALICE data, JHEP 1209 (2012) 112 (top) and PRC 90 (2014) 034904 (bottom); Histories: HYDJET++

The simulated p_{T}-spectra and elliptic flow $v_{2}(p_{T})$ of D with the same freeze-out parameters as for inclusive (light) hadrons match the data. Nuclear modification factor $R_{AA}(p_{T})$ is reproduced at high p_{T}.

Charmed mesons at LHC (summary)

Momentum spectra and elliptic flow of D and J/ψ mesons in PbPb collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components. Thermal freeze-out of D mesons happens simultaneously with thermal freeze-out of light hadrons; thermal freeze-out of J/ψ-mesons happens appreciably before, presumably at chemical freeze-out (with reduced radial and longitudinal collective velocities). Thus the significant part of D mesons (up to p_{T}~4 GeV/c) seems to be in a kinetic equilibrium with the medium, while J/ψ mesons – not.

Non-thermal charm production mechanism and in-medium heavy quark energy loss are important at high p_{T}.