Chiral Electric Separation Effect

Xu-Guang Huang

huangxuguang@fudan.edu.cn
Physics Department and Center for Particle Physics and Field
Theory, Fudan University, Shanghai

Poster for Quark Matter 2015, Kobe, Japan

September 25, 2015

Chiral magnetic effect

- ▶ Heavy-ion collisions generate strong magnetic fields.
- Chirality imbalance + magnetic field = chiral magnetic effect
 (CME) (Kharzeev 2004, Kharzeev, Mclerran, Warringa, Fukushima 2007-2008):

$$\mathbf{J}_V = \frac{N_c e}{2\pi^2} \mu_A \mathbf{B}$$

Phenomenology: charge-charge azimuthal correlation. Voloshin 2004, STAR@RHIC 2009-2015. ALICE@LHC 2012-2014

▶ Signal for local parity violation of QCD?! Need more theoretical and experimental studies on the backgrounds.

Chiral separation effect

 A dual effect to chiral magnetic effect: chiral separation effect (CSE) (Son and Zhitnitsky 2004, Metlitski and Zhitnitsky 2005)

$$\mathbf{J}_V = \frac{N_c e}{2\pi^2} \mu_A \mathbf{B} \ \Rightarrow \ \mathbf{J}_A = \frac{N_c e}{2\pi^2} \mu_V \mathbf{B}$$

- ► The coupled evolution of CME and CSE induces massless collective modes, Chiral magnetic wave (CMW) (Kharzeev and Yee 2011)
- ▶ CMW \Rightarrow electric quadrupole in QGP \Rightarrow $v_2(\pi^-) v_2(\pi^+) \propto A_\pm$ with $A_\pm = (N_+ N_-)/(N_+ + N_-)$ (Burnier, Kharzeev, Liao, and Yee, 2011)

▶ STAR measurements (2012-2015) qualitatively coincides with CMW. But need to study and substrac the background effects.

E-induced anomalous transport?

▶ Question: Can strong E-field induce anomalous transport?

	\mathbf{E}	В
\mathbf{j}_V	σ	$\frac{e}{2\pi^2}\mu_A$
\mathbf{j}_A	???	$\frac{e}{2\pi^2}\mu_V$

$$j^{\mu}_{A} = \sigma_5 E^{\mu}???$$

- ▶ Can σ_5 be nonzero?
- ▶ j_A^μ is P-even while E^μ is P-odd $\Rightarrow \sigma_5 \propto \mu_A$ to balance the parity; j_A^μ is C-even while E^μ is C-odd $\Rightarrow \sigma_5 \propto \mu_V$ to balance the charge conjugation \Rightarrow if σ_5 is nonzero it must be

$$\sigma_5 \propto \mu_V \mu_A$$
.

• If σ_5 is nonzero, the E-field induces a axial current and thus a chirality separation. This effect can be called chiral electric separation effect (CESE)

Chiral Electric Separation Effect (I)

- ▶ Perform a concrete calculation to hot QED plasma.
- Apply Kubo formula:

$$\mathbf{j}_{A}^{\mu}(\omega, \mathbf{k}) = \sigma_{5}i\omega\mathbf{A}(\omega, \mathbf{k})$$

$$\Rightarrow \sigma_{5} = \lim_{\omega \to 0} \lim_{\mathbf{k} \to 0} \frac{i}{3\omega} \sum_{i=1}^{3} G_{R}^{ii}(\omega, \mathbf{k})$$

$$G_{R}^{ij}(x) = -i\theta(x)\langle [J_{A}^{i}(x), J_{V}^{j}(0)] \rangle.$$

Leading-log approximation, fermion propagates in axial background so that $\mu_A \neq 0$

where the effective vertex is (dotted lines: HTL propagators)

Chiral Electric Separation Effect (II)

At leading plus subleading order in $\mu_{V,A}/T$ expansion, we obtain result leading-log in e(XGH and Liao, PRL110(2013)232302)

$$\sigma_5 \approx 20.499 \frac{\mu_V \mu_A}{T^2} \frac{T}{e^3 \ln(1/e)} \propto \frac{\mu_V \mu_A}{T^2} \sigma$$

As a by-product ¹,

$$\sigma \ \approx \ \frac{T}{e^3 \ln(1/e)} \left(15.6952 + 7.76052 \frac{\mu_V^2 + \mu_A^2}{T^2}\right)$$

▶ For thermal QCD with two flavor quarks, consider an axial current $j_A^\mu = \bar{\psi} Q_A \gamma^\mu \gamma_5 \psi$ with Q_A a flavor matrix and Q_e charge matrix: (Jiang, XGH, and Liao, PRD91(2015)045001)

$$\sigma_5 \approx T \frac{\text{Tr}_f Q_e Q_A}{g^4 \ln(1/g)} 14.5163 \frac{\mu_V \mu_A}{T^2}$$

► The CESE was also confirmed by holographic calculations: (Pu, Wu, and Yang 2014)

¹Good check: put $\mu_V = \mu_A = 0$, it recovers the result of Arnold, Moore, Yaffe 2000

Chiral Electric Separation Effect (III)

- Collective modes by CESE, CME, and CSE.
- ▶ The complete electromagnetic response of a chiral matter:

$$j_V^{\mu} = \sigma E^{\mu} + \frac{e}{2\pi^2} \mu_A B^{\mu},$$

 $j_A^{\mu} = \sigma_5 E^{\mu} + \frac{e}{2\pi^2} \mu_V B^{\mu}.$

- Coupled evolution of vector and axial currents leads to several collective modes (XGH and Liao, PRL110(2013)232302):
 - If $\mathbf{B} = B\hat{z}$ and $\mathbf{E} = 0$: two Chiral magnetic waves along \mathbf{B}

$$\omega = \pm \sqrt{(v_{\chi}k_z)^2 - (e\sigma_0/2)^2} - i(e\sigma_0/2)$$

• If ${f B}=0$ and ${f E}=E\hat z+{f A}$ -background: two Chiral electric waves

$$\omega = \pm \sqrt{(v_e k_z)^2 - (e\sigma_0/2)^2} - i(e\sigma_0/2)$$

If $\mathbf{B} = 0$ and $\mathbf{E} = E\hat{z} + V$ -background: one Vector density wave and one Axial density wave along E-field

$$\omega_V = v_v k_z - ie\sigma_0,$$

$$\omega_A = v_a k_z$$

▶ These collective excitations transport chirality and charge, and leads to novel charge azimuthal distribution ⇒

Chiral Electric Separation Effect (IV)

Possible implication. In-plane E-field in AuCu collisions.(Deng & XGH, PLB742(2015)296)

▶ In-plane dipole due to usual Ohm conduction + out-of-plane dipole due to CME + quadrupole due to CESE and CME in Cu + Au collisions.

$$f_1(q,\phi) \propto 1 + 2v_1^0 \cos(\phi - \psi_1) + \frac{2qd_E \cos(\phi - \psi_E)}{2qd_B \cos(\phi - \psi_B)} + \frac{2\chi qd_B \cos(\phi - \psi_B)}{2qd_B \cos[2(\phi - \psi_B)]} + \frac{2\chi qd_B \cos[2(\phi - \psi_C)]}{2qd_B \cos[2(\phi - \psi_C)]} + \text{higher harmonics}$$

Chiral Electric Separation Effect (V)

▶ Signals for CESE in Cu + Au: $\zeta_{\alpha\beta} = \langle \cos[2(\phi_{\alpha} + \phi_{\beta} - 2\psi_{\rm RP})] \rangle$ and Ψ_2^q (the event-plane for hadrons of charge q).

▶ $\Delta \zeta = \zeta_{opp} - \zeta_{same}$ and $\Delta \Psi = \langle |\Psi_2^+ - \Psi_2^-| \rangle$ sensitive to CESE, survive final interaction(Ma and XGH, PRC 91(2015)054901)

Possible backgrounds for $\Delta \zeta = \zeta_{opp} - \zeta_{same}$: local charge conservation, chiral magnetic wave. Need more studies.