The Quark-Gluon-Plasma as a Dynamical Quasi-Particle Medium

H. Berrehrah, W. Cassing, E. Bratkovskaya

THE PROBLEM

- What are the QGP degrees of freedom (d.o.f): IQCD gives QGP EoS, which need to be interpreted in terms of d.o.f
- What are the temperature, quark chemical potential (T, μ) dependencies of QGP d.o.f
- What are the thermodynamic and transport properties of the QGP

THE MODEL

- OPPM (Dynamical Quasi-Particle Model): d.o.f are strongly interacting quasi-particles
- QCD is a theory with a rich structure \leftrightarrow DQPM is a model which reproduces QCD features at finite (T, μ)
- DQPM: 2PI-HTL approach + Quasiparticle width + Phenomenological flexibility

RESULTS

- Good agreement between DQPM vs lQCD for thermodynamic (EoS, C_s^2) and transport quantities $(\eta/s, \zeta/s, \sigma_e/T, ...)$
- ullet DQPM allows to extrapolate to finite μ presently out of reach for IQCD.
- Comparison study of: on- vs off-shell, $\mu = 0$ vs finite μ , partonic vs hadronic medium

MODEL DETAILS

d.o.f: off-shell quark and gluon with finite mass and width

$$\begin{split} M_g(T,\mu) &= \frac{g^2(T^{\star}/T_c(\mu))}{6} \left[\left(N_c + \frac{1}{2} N_f \right) T^2 + \frac{N_c}{2} \sum_q a_{\mu} \mu^2 \right] \\ M_{q,\bar{q}}(T,\mu) &= \frac{N_c^2 - 1}{8N_c} \, g^2(T^{\star}/T_c(\mu)) \Big[T^2 + a_{\mu} \mu^2 \Big] & \text{with: } \mathbf{a}_{\mu} = \mathbf{1}/\pi^2 \\ \gamma_g(T,\mu) &= \frac{1}{2} N_c \, \frac{g^2(T^{\star}/T_c(\mu))}{8\pi} \, T \, \ln \left(\frac{2c}{g^2(T^{\star}/T_c(\mu))} + 1 \right) & \\ \gamma_{q,\bar{q}}(T,\mu) &= \frac{1}{2} \frac{N_c^2 - 1}{2N_c} \, \frac{g^2(T^{\star}/T_c(\mu))}{8\pi} \, T \ln \left(\frac{2c}{g^2(T^{\star}/T_c(\mu))} + 1 \right) \end{split}$$

g(T): effective coupling, IR enhancement

$$g^2(s/s_{SB}) = g_0 \left(\left(\frac{s}{s_{SB}} \right)^b - 1 \right)^d$$
 with: $g_0 = 170, b = -0.178, d = 1.146$
$$\left[g^2(s/s_{SB}) \rightarrow s/s_{SB} \middle|_{lQCD} \rightarrow g^2(T/T_c) \right]$$

 $\mu_B=0$

100

200

300

T [MeV]

400

d.o.f in DQPM

DOPM at finite (T, μ)

Scaling hypothesis: • $g(T/Tc(\mu = 0)) \rightarrow g(T^*/T_c(\mu))$ • Constant energy density ϵ at $T = T_c(\mu)$ with ϵ at $T_c(\mu = 0) \approx 0.158$ GeV is fixed by lQCD. \hookrightarrow $T_c(\mu) = T_c(\mu = 0)\sqrt{1 - \alpha\mu^2} \approx T_c(\mu = 0) (1 - \alpha/2\mu^2 + \dots)$, with $\alpha_{DQPM} \approx 8.79 \text{ GeV}^{-2} \leftrightarrow \alpha_{lQCD} \approx 8.796 \text{ GeV}^{-2}$

DOPM RESULTS vs LQCD

- Fix the T, μ dependencies of QGP d.o.f
- Smooth transition from partonic-hadronic world: Non-pQCD treatment

QGP thermodynamics at (T, μ)

• Good description of QGP thermodynamics within DQPM, including speed of sound

QGP transport at (T, μ)

- q, g partonic cross section evaluated for on- and offshell massive q, g at (T, μ)
- Smooth increase of η/s , σ/s , ... vs T and μ
- Minimum around T_c at $\mu = 0$ and finite μ

Consistent microscopic evaluation of QGP transport coefficients, in agreement with IQCD

REFERENCES

- [1] H. Berrehrah, E. Bratkovskaya, W. Cassing, P.B. Gossiaux, and J. Aichelin. Phys.Rev. C91 (2015) 5, 054902.
- [2] H. Berrehrah, E. Bratkovskaya, W. Cassing, R. Marty. J.Phys.Conf.Ser. 612 (2015) 1, 012050.
- [3] H. Berrehrah, E. Bratkovskaya, W. Cassing, QGP properties at finite (T, μ) : I. Thermodynamics; II. Transport. In preparation.
- [4] W. Cassing The European Physical Journal Special Topics 168, 3 (2009). [6] IQCD: PRC90 (2014) 114025; JHEP 1208, 053 (2012)
- [5] 1QCD: PRD76, 101701 (2007); PRL.94, 072305 (2005); PoS LAT2007, 221.; PoS 185, 186 (2012).; PRL. 99, 022002 (2007).; PLB 597, 57 (2004).

FUNDING

