PHENIX measurements of the collision system dependence of heavy quarkonia production

Anthony D Frawley
Florida State University

On behalf of the PHENIX Collaboration

Quark Matter 2015, Kobe
September 29, 2015
New data from PHENIX:

U+U J/ψ suppression from RHIC 2012 Run (arXiv:1509.05380)

ψ(2S) / ψ(1S) ratios in p+p, p+Au, p+Al from 2015 Run
 • Tracks measured with muon arms + FVTX detector
 • Improved opening angle resolution separates J/ψ from ψ’ in mass spectrum
LHC energy brings strong charm coalescence

J/ψ suppression much stronger at 200 GeV than 2.76 TeV for similar energy density - strong coalescence

At RHIC 39 GeV, 62 GeV, 200 GeV all show similar suppression - perhaps strongest at 200 GeV

In the model (PRC82, (2010) 064905) this similarity is due to a balance between color screening and coalescence
Where does coalescence start to dominate?

U+U collisions allow us to go to higher energy density at RHIC

Central U+U collisions should have:
• 15-20% higher energy density than Au+Au collisions
• stronger color screening
• Increased charm production from ~ 25% larger N_{coll} values
• stronger coalescence

J/ψ production in U+U collisions allows us to explore how the trade-off between color screening and coalescence evolves as we increase energy density and charm production
U+U measurements

In RHIC Run 12 we recorded 1.08 B minbias $\sqrt{s_{NN}} = 193$ GeV U+U events

The p+p reference for R_{AA} is from the RHIC 2008 run
 • Phys. Rev. Lett. 107, 142301 (2011)

The p+p cross section was reduced by 0.964
 • Accounts for 200 → 193 GeV energy difference between p+p and U+U data
 • derived from PYTHIA p+p simulations

Final J/ψ data from the muon arms (1.2 < |y| < 2.2) are now available
 • arXiv:1509.05380
U deformation

Need N_{coll} to get R_{AA} for U+U. Requires a deformed Woods Saxon distribution of the nucleons in the U nucleus

$$\rho = \frac{\rho_0}{1 + \exp([r - R']/a)}$$

where

$$R' = R[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]$$

We considered two parameterizations of the deformation of the U nucleus:

Set 1 (Phys. Lett. B 679, 440 (2009)) - “conventional” description of the U deformation
 - The mean radius and diffuseness are taken from electron scattering

Set 2 (Phys. Lett. B 749, 215 (2015)) differs in 2 ways:
 - Takes into account the finite radius of the nucleon
 - Averages over all orientations of axis-of-symmetry
 - match average radius and diffuseness to values reported from electron scattering
The U+U R_{AA}

Start with the latest parameter set (2) to calculate R_{AA}

The U+U R_{AA} is noticeably larger than that for Au+Au

PHENIX
$J/\psi \rightarrow \mu \mu$

$1.2 < |y| < 2.2$

- U+U $\sqrt{s_{NN}}=193$ GeV (gl. sys. 8.1%)
 - pp reference: $\sqrt{s}=200$ GeV \times 0.964
 - Deformed Woods-Saxon parameter set 2
- Au+Au $\sqrt{s_{NN}}=200$ GeV (gl. sys. 9.2%)

arXiv:1509.05380

Number of Participants

The U+U R_{AA} is noticeably larger than that for Au+Au
Effect of U deformation model

The parameters for set 1 are significantly different in their surface diffuseness:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>set 1</th>
<th>set 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (fm)</td>
<td>6.81</td>
<td>6.86</td>
</tr>
<tr>
<td>a (fm)</td>
<td>0.6</td>
<td>0.42</td>
</tr>
<tr>
<td>β_2</td>
<td>0.28</td>
<td>0.265</td>
</tr>
<tr>
<td>β_4</td>
<td>0.093</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Larger surface diffuseness for set 1 results in a less compact nucleus, a larger reaction cross section by 12%, and N_{coll} values that are smaller by 6 - 15%
Ratio of dN/dy for U+U and Au+Au

Make the experimental ratio of dN/dy values.
• Has the advantage that it does not rely on N_{coll}
• However our expectation for its behavior is determined by N_{coll}

Compare with curves showing how the ratio would depend on centrality if J/ψ production scaled with
• N_{coll} (dashed)
• N_{coll}^2 (solid)

Curves shown for sets 1 and 2

For set 2, for central collisions the ratios tend to favor the N_{coll}^2 curve

For set 1, the ratios are consistent with both curves across centrality, slightly favoring N_{coll}^2 for most central collisions
Ratio of dN/dy for U+U and Au+Au

Make the experimental ratio of dN/dy values.

- Has the advantage that it does not rely on N_{coll}
- However our **expectation** for its behavior is determined by N_{coll}

Compare with curves showing how the ratio would depend on centrality if J/ψ production scaled with

- N_{coll} (dashed)
- N_{coll}^2 (solid)

Curves shown for sets 1 and 2

For set 2, for central collisions the ratios tend to favor the N_{coll}^2 curve

For set 1, the ratios are consistent with both curves across centrality, slightly favoring N_{coll}^2 for most central collisions

Consistent with a picture in which the increase in charm coalescence becomes more important than the increased color screening when going from Au+Au to U+U
Preliminary $\psi' / J/\psi$ ratios in $p+p$, $p+Al$ and $p+Au$
Preliminary ψ' / J/ψ ratios in $p+p$ & $p+Au$

$p+p$, collisions
ψ' and $J/\psi \rightarrow \mu^+\mu^-$ \hspace{0.5cm} 1.2 < |y| < 2.2
Preliminary ψ' / J/ψ ratios in $p+p$ & $p+Au$

$p+Au$, collisions
ψ' and $J/\psi \to \mu^+\mu^-$ $1.2 < |y| < 2.2$

Fit method and cuts in $p+Au$ identical to $p+p$ analysis
Preliminary $\psi' / J/\psi$ ratios in $p+p$ & $p+Au$

$p+Au$, collisions
ψ' and $J/\psi \rightarrow \mu^+\mu^- \quad 1.2 < |y| < 2.2$

Fit method and cuts in $p+Au$ identical to $p+p$ analysis

Stronger suppression evident in Au going direction
ψ' / J/ψ ratios in p+Au and p+Al vs rapidity

Centrality integrated ratio plotted vs rapidity for p+Au and p+Al

Midrapidity point is from d+Au

Strong suppression at backward rapidity, no suppression at forward rapidity
What causes the differential suppression?

Can **breakup** in collisions with nucleons explain the differential suppression at \(y = -1.7 \)?

No - the effect is much too small!

From PRC 87 (2013) 054910 - model of \(\tau \) dependence fitted to world’s data

Get \(\sim 1\% - 7\% \) effect in \(-1.2 < y < -2.2\)
What causes the differential suppression?

Since we have eliminated breakup, there is no CNM mechanism that could explain the strong suppression at backward rapidity

- That leaves final state effects

Final state effects:

- Suppression is caused by interactions with **produced** particles
- So it can occur **after the charmonium leaves the target**
- i.e. when the meson is fully formed

Graphs and Data:

- PHENIX data
- Ferreiro (PLB 749 (2015) 98)

"Comovers" in final state

- PHENIX preliminary
- ±15.6% global uncertainty on forward/backward rapidity points
- ±16% global uncertainty on midrapidity point

$d+Au \sqrt{s_{NN}}=200 \text{ GeV} \ |y|<0.35$

- $N_{\psi}^{(2s)}(p+p)/N_{J/\psi}$
- R_{dAu}

Figure:

- $N_{\psi}(p+p)/N_{J/\psi}$
- $N_{J/\psi}(d+Au)$
- $p+Au$
- $p+Al$
- $d+Au$ PRL 111 202301 (2013)

Monday, September 28, 15
What causes the differential suppression?

Since we have eliminated breakup, there is no CNM mechanism that could explain the strong suppression at backward rapidity

- That leaves final state effects

Final state effects:

- Suppression is caused by interactions with produced particles
- So it can occur after the charmonium leaves the target
- i.e. when the meson is fully formed

![Graph showing suppression as a function of rapidity and N_{coll}]

Differential Suppression

- $N_{\psi(2s)}^{p+p} / N_{J/\psi}^{p+p}$
- $N_{\psi(2s)}^{p+A} / N_{J/\psi}^{p+A}$

Uncertainty

- ±15.6% global uncertainty on forward/backward rapidity points
- ±16% global uncertainty on midrapidity point

Model Comparison

- PHENIX data
- PRL 111 202301 (2013)

References

- Du & Rapp arXiv:1504.00670
- Hadronic gas + QGP in final state
Adding ALICE data

The comover model does a reasonable job of describing available $\psi(2S)$ and J/ψ data from both PHENIX and ALICE.

But underestimates the differential suppression in both cases.

Diagram Description

- The diagram shows the ratio of yields $N_{\psi(2S)}$ to $N_{J/\psi}$ for different reactions: $p+p$, $p+Au$, $p+Al$, and $d+Au$.
- The data points are compared to the comover model predictions.
- The graph is labeled with PHENIX preliminary and ALICE data.
- The y-axis represents the rapidity range from -2 to 2.
- The x-axis represents the number of collisions N_{coll} for PHENIX data and the rapidity y_{cms} for ALICE data.

References

- d+Au PRL 111 202301 (2013)
- PHENIX data
- ALICE data

Monday, September 28, 15
Conclusions

U+U J/ψ suppression is weaker than that for Au+Au
 • Consistent with dominance of coalescence over color screening

Strong indication of final state effects in p+Au $\psi(2S) / \psi(1S)$ ratio vs rapidity
 • Differential suppression of $\psi(2S)$ - consistent with comover model

p+Au R_{pA} analysis vs centrality to come
Backup
ψ' / J/ψ ratios in p+Au and p+Al vs rapidity

Centrality integrated ratio plotted vs rapidity for p+Au and p+Al

Midrapidity point is from d+Au

Strong suppression at backward rapidity
No suppression at forward rapidity

Look also at p_T dependence for p+Au:
Fitting the mass spectrum for p+p, p+Au, p+Al

The fit is a log-likelihood fit to raw data with the following components:

- A properly normalized mixed event combinatorial background
- An exponential function to represent correlated background dimuons
- Peaks to represent the resonances:
 - A Crystal Ball function (mass resolution + range straggling in absorber)
 - An additional Gaussian (valid pairs involving lower quality tracks)
 - Set to 200 MeV in fit, varied to determine systematic

The $\psi(2S)$ and $\psi(1S)$ are constrained so:

- Crystal Ball tails have the same shape, relative normalization to the peak for $\psi(1S)$, $\psi(2S)$
- The $\psi(2S)$ width is 1.15 times the $\psi(1S)$ width
 - From sims (varied to determine systematic)
- The $\psi(1S)$ mass floats (moves only 1-2%)
- The $\psi(2S) - \psi(1S)$ mass difference fixed:
 - PDG \times ratio of $\psi(1S)$ mass to PDG
- Relative normalization of second gaussian is the same for $\psi(2S)$ and $\psi(1S)$
The PHENIX muon arms

Experiment:
U+U data at $\sqrt{s_{NN}} = 193$ GeV from RHIC 2012 run

MB trigger: 96% efficient 1.08 B events recorded

Centrality measured by BBC ($3.0 < |\eta| < 3.9$)

$J/\psi \rightarrow \mu^+\mu^- \quad 1.2 < |y| < 2.2$

Acceptance \otimes Efficiency:
PYTHIA $J/\psi \rightarrow \mu^+\mu^-$ events through GEANT, embedded in real data and reconstructed

Efficiency includes occupancy effects

Acceptance flat to within 30% from $p_T = 0 - 8$ GeV/c
U+U Signal Extraction

0-10% (most central)

(a) PHENIX
U+U Centrality 0-10%
-2.2<\eta<-1.2 All Pairs
Mixed-Event Pairs

(b) PHENIX
U+U Centrality 0-10%
1.2<\eta<2.2 All Pairs
Mixed-Event Pairs

(c) PHENIX
U+U Centrality 0-10%
-2.2<\eta<-1.2 Background-subtracted Pairs

(d) PHENIX
U+U Centrality 0-10%
1.2<\eta<2.2 Background-subtracted Pairs

60-70% (most peripheral)

(e) PHENIX
U+U Centrality 60-70%
-2.2<\eta<-1.2 All Pairs
Mixed-Event Pairs

(f) PHENIX
U+U Centrality 60-70%
1.2<\eta<2.2 All Pairs
Mixed-Event Pairs

(g) PHENIX
U+U Centrality 60-70%
-2.2<\eta<-1.2 Background-subtracted Pairs

(h) PHENIX
U+U Centrality 60-70%
1.2<\eta<2.2 Background-subtracted Pairs

Double Gaussian Fit