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Introduction

We extend our previous work to:

• Extend the background evolution to full (3+1)D anisotropic hydrodynamics (aHydro)
with a rapidity profile consistent with experimentally-observed particle multiplicity dis-
tributions;

• Update the mixing fractions to recent updated values determined via fits to ATLAS,
CMS, and LHCb results for Υ and χb production in p-p collisions;

• Correct the probability weight-function used for centrality averaging in order to match
the experimental procedure.

We find that, with the improvements listed above, the original model gives a reasonable description
of the Npart−, y−, and pT -dependence of Υ(1s) and Υ(2s) suppression.

Anisotropic QGP
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One particle distribution function:

f (p, x) = feq

(√
p2
T + [1 + ξ(x)]p2

z/Λ(x)
)

• Finite shear viscosity
results in momentum
space anisotropies

• Anisotropies, ξ, can be
quite large

• Anisotropies present in
both weak and strong
coupling approaches

• Anisotropies modify the
heavy quark potential

Potential Model and RAA

• The heavy quark potential in the QGP has both real and imaginary parts,
V = <[V ] + i=[V ].

<[V ] = −a
r

(1 + µr)e−µr +
2σ

µ
[1− e−µr]− σre−µr − 0.8σ

m2
br

a = 0.385, µ is the anisotropic Debye mass, σ = 0.223 GeV2

• Solve Schrödinger equation with complex potential

=[V ] = −αsCFT {φ(r/mD)− ξ[ψ1(r/mD, θ) + ψ2(r/mD, θ)]}
• The imaginary part gives the decay rate.

Γ(τ,x⊥, ς) =

2=[Ebind(τ,x⊥, ς)] <[Ebind(τ,x⊥, ς)] > 0

γdis <[Ebind(τ,x⊥, ς)] ≤ 0.

• We use (3+1)D anisotropic hydrodynamics for background evolution

Raw Suppression and Feed Down
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• Pattern of sequential
suppression seen

• No visible thresholds
due to continuous
decays

Υ(1s) Production Fractions

Υ(1s) 0.618

Υ(2s) 0.105

Υ(3s) 0.02

χb1 0.207

χb2 0.05

Υ(2s) Production Fractions

Υ(2s) 0.5

Υ(3s) 0.5

Final Results
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• Some tension with the lowest Npart point for R
Υ(2s)
AA

• R
Υ(1s)
AA data prefers small shear viscosities

1 ' 4πη/S ' 2

• R
Υ(2s)
AA data does not provide a tight constraint on η/S

at this point in time
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• Model does a reasonable job in reproducing the trends
seen in the CMS preliminary data

• Change in the way we perform centrality averaging

• Still some lingering tension with the ALICE forward
results
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• Slow increase in RAA is due to the effect of time-
dilation of the formation times of the states

• The data prefers small values of η/S for R
Υ(1s)
AA

• For the R
Υ(2s)
AA , the model seems to under predict the

amount of suppression seen in CMS preliminary data

Conclusions

• At central rapidities (y ' 2) the data are consistent with bottomo-

nia suppression due to the creation of a deconfined QGP with a

shear viscosity to entropy density ratio roughly between 1/(4π)

and 2/(4π).

• These values are consistent with those obtained via analysis of the

collective flow coefficients, thereby providing further evidence that

the QGP created in relativistic heavy ion collisions behaves like a

nearly perfect fluid.
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