Bottomonia suppression in 2.76 TeV Pb-Pb collisions

Brandon Krouppa¹, Radoslaw Ryblewski², and Michael Strickland¹

¹Department of Physics, Kent State University, Kent, OH 44242 United States

²The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland

Introduction

We extend our previous work to:

- Extend the background evolution to full (3+1)D anisotropic hydrodynamics (aHydro) with a rapidity profile consistent with experimentally-observed particle multiplicity distributions;
- Update the mixing fractions to recent updated values determined via fits to ATLAS, CMS, and LHCb results for Υ and χ_b production in p-p collisions;
- Correct the probability weight-function used for centrality averaging in order to match the experimental procedure.

We find that, with the improvements listed above, the original model gives a reasonable description of the $N_{part}-, y-$, and p_T -dependence of $\Upsilon(1s)$ and $\Upsilon(2s)$ suppression.

Anisotropic QGP

- Finite shear viscosity results in momentum space anisotropies
- Anisotropies, ξ , can be quite large
- Anisotropies present in both weak and strong coupling approaches
- Anisotropies modify the heavy quark potential

Potential Model and R_{AA}

• The heavy quark potential in the QGP has both real and imaginary parts, $V = \Re[V] + i\Im[V]$.

$$\Re[V] = -\frac{a}{r}(1+\mu r)e^{-\mu r} + \frac{2\sigma}{\mu}[1-e^{-\mu r}] - \sigma r e^{-\mu r} - \frac{0.8\sigma}{m_b^2 r}$$

 $a=0.385,\,\mu$ is the anisotropic Debye mass, $\sigma=0.223~{\rm GeV}^2$

- Solve Schrödinger equation with complex potential $\Im[V] = -\alpha_s C_F T \left\{ \phi(r/m_D) \xi[\psi_1(r/m_D,\theta) + \psi_2(r/m_D,\theta)] \right\}$
- The imaginary part gives the decay rate.

$$\Gamma(\tau, \mathbf{x}_{\perp}, \varsigma) = \begin{cases} 2\Im[E_{\text{bind}}(\tau, \mathbf{x}_{\perp}, \varsigma)] & \Re[E_{\text{bind}}(\tau, \mathbf{x}_{\perp}, \varsigma)] > 0 \\ \gamma_{\text{dis}} & \Re[E_{\text{bind}}(\tau, \mathbf{x}_{\perp}, \varsigma)] \leq 0. \end{cases}$$

• We use (3+1)D anisotropic hydrodynamics for background evolution

Raw Suppression and Feed Down

- Pattern of sequential suppression seen
- No visible thresholds due to continuous decays

$\Upsilon(1s)$ Production Fractions	
$\Upsilon(1s)$	0.618
$\Upsilon(2s)$	0.105
$\Upsilon(3s)$	0.02
χ_{b1}	0.207
χ_{b2}	0.05
$\Upsilon(2s)$ Production Fractions	
$\Upsilon(2s)$	0.5
$\Upsilon(3s)$	0.5

Final Results

- $R_{AA}^{\Upsilon(1s)}$ data prefers small shear viscosities $1 \simeq 4\pi\eta/S \simeq 2$
- $R_{AA}^{\Upsilon(2s)}$ data does not provide a tight constraint on η/S at this point in time

- Change in the way we perform centrality averaging
- Still some lingering tension with the ALICE forward results

- Slow increase in R_{AA} is due to the effect of time-dilation of the formation times of the states
- The data prefers small values of η/S for $R_{AA}^{\Upsilon(1s)}$
- For the $R_{AA}^{\Upsilon(2s)}$, the model seems to under predict the amount of suppression seen in CMS preliminary data

Conclusions

- At central rapidities ($y \simeq 2$) the data are consistent with bottomonia suppression due to the creation of a deconfined QGP with a shear viscosity to entropy density ratio roughly between $1/(4\pi)$ and $2/(4\pi)$.
- These values are consistent with those obtained via analysis of the collective flow coefficients, thereby providing further evidence that the QGP created in relativistic heavy ion collisions behaves like a nearly perfect fluid.

Acknowledgements/References

M. Strickland and B. Krouppa were supported by the U.S. Department of Energy under Award No. DE-SC0013470. R. Ryblewski was supported by the Polish National Science Center Grant No. DEC-2012/07/D/ST2/02125.

- [1] B. Krouppa, R. Ryblewski, and M. Strickland, (2015), 1507.03951.
- [2] CMS Collaboration Twiki (2015), CMS-PAS-HIN-10-006
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN15001.
- [3] B. B. Abelev et al. (ALICE), Phys.Lett. B738, 361 (2014), 1405.4493.
- [4] H. Wöeri, International Workshop on Heavy Quarkonium 2014 (2015),

https://indico.cern.ch/event/278195/session/7/contribution/104/material/slides/0.pdf.