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Abstract
We investigate the stability of an inhomogeneous chiral condensed phase against low energy fluctuations about a spatially modulated order parameter. This phase corresponds to the so-called dual chiral density wave of dense quark ma
where the chiral condensate is spatially modulated with a finite wavevector in a single direction. From a symmetry point of view the phase realizes a locking of flavor and translational symmetries. Starting with a Landau-Ginzburg-Wilson effective
Lagrangian, we find that the associated Nambu-Goldstone modes, whose dispersion relations are spatially anisotropic and soft in the direction normal to the modulation wavevector, wash out the long-range order at finite temperatures, but sup
algebraically decaying long-range correlations. This implies that the phase can exhibit a quasi-one-dimensional order as in smectic liquid crystals.
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Recent theoretical studies of QCD at finite temperature and density predict the presence of inhgmo-

geneous chiral condensates. If the inhomogeneous phase actually exists, an elementary excitatipn on B Low energy effective theory for fluctuation fields (6(x) and Bi(x)) :  j, = cosa:
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geneous chiral condensed phase and explore dispersion relations for the corresponding low-eergy
collective excitation modes.
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2. Landau-Peierls instability; Next, we investigate how much the inhomogeneous chiral condensed
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| —a\ 2 —
w? ~ agq u2_k§+(k2) } — AR2k2 — Bk

— Z

Landau-Ginzburg-Wilson effective Lagrangian
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> low e_nergyeffectl\{eLagran_glardensn)_/ for a g_eneredhlra!order parametep > These dispersion relations are spatially anisotropic No 'w:G:n:;;m;ﬁ;}:(giﬁm_ul:Sky(m;)] }
> obtainedfrom a microscopi¢heory by integratingut all higher energy modes = The lack of k? is a consequence of the rotational symmetry about any axis in x-y plane (as in SmLC)

> coefficientsu; ;can be estimatedithin NJL/QM model

, _ > Transverse fluctuations are softer than longitudinal ones
> terms up to §*-order one with ¢ jleads to a stable inhomogeneous phase

> O(kﬁ): higher-order correction from interactions with background modulation

Inhomogeneous chiral condensed phase 3. Landau-Peierls instability [3

We consider a Fulde-Ferrell-type inhomogeneous chi- Impacts on low energy fluctuation
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Figure 1: The DCDW condensate given by corresponding tQEGZ’WE)TgC]Z??b%

a plane wae (V1)) + i(Piysmsh) = Aeid?, = which, however, does not immediately lead to no existence of DCDW phase.

= which possibly exists as a quasi-1D phase. [Landau-Lifshitz(1969); Baym-Friman-Grinstein (1982)]
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0 = low-energy fluctuations are not so strong to wash out the order parameter (quasi-long-range order) [4]
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_ The DCDW phase can be practically realized as
\ sin(qz) / The DCDW phase is realized as a LRO if T is sufficiently low (0<T<T,) a quasi-one-dimensionally ordered one akin to
7 smectic-A liquid crystals [Als-Nielsen et al (1977,1980)]
> Symmetry breaking pattern :
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’ . . . . y ~Z - ‘/Z
o 45t Bs=0 — H Unioken generator low energy collective excitations in the DCDW phase / '09/
L . . . B - ' ' -
axial isospin-translation locking symmetry — a flavor-translation locking symmetry NG modes: NG modes
B3 » spatially anisotropic dispersion relations e e

® (s -+ ﬁg # 0 — G/H (Broken generator)
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» Landau-Pelerls instability

Long-range correlations: Long-range correlations:
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= One of which will be redundant [cf. Low-Manohar(2002)] S COS 2 _ _ _ _ Hee
| ) (gs + fB3) cos q » The DCDW phase is stable as a quasi-one-dimensional ordered one
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e g(t, f) Redundant [cf. Low-Manohar(2002); Watanabe-Murayama(2013); Hayata-Hidaka(2014)] > Experlmental Im pl Icatlo ns:
- to explore how collective modes in DCDW interact with external probes (quarks/photons) via quasi-Bragg peaks
e - - N ; : i i
NG mOdes n DCDW d[m(G/H) — 3 (8 — 3 ; independent NG modes remain for inertial and spacetime symmetries) B Phenomen0|0glca| Im p||Cat|onS:
g — g(tj f‘) (NG modes can be chosen as axial isospin rotations) » astronomical implications (novel cooling and EOS/MR relation with DCDW) [cf. Tatsumi-Muto('14), Carignano-Ferrer-Incera-Paulucci('15)]
\ / - to see how NG modes in DCDW affect transport properties in the compact star inner core
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