

Study of direct photon

with internal conversion method in Cu+Cu collisions PH **

Tomoya Hoshino for the PHENIX collaboration Quark Physics Laboratory (Hiroshima U.) and Radiation Laboratory (RIKEN)

Motivation

Direct photon measurement

- Photons and dileptons are good probes to understand space-time evolution of the produced system in heavy ion collisions.
- The PHENIX experiment has published direct photons in p+p, d+Au and Au+Au [1-3].
- PHENIX has observed thermal photons in Au+Au.
- The motivation of this analysis is search for thermal photons in Cu+Cu, finalization and publication of preliminary Cu+Cu results, comparison to Au+Au.

Figure 1 (left): Invariant cross section (p+p) and invariant yield (Au+Au) of direct photon [1]. Figure 2 (center): The direct photon fraction, r_v , as a function of p_T in p+p, d+Au, and Au+Au (MB) [2]. Figure 3 (right): PHENIX preliminary results on virtual photon in Cu+Cu.

Virtual direct photon

Source of virtual direct photon

- Any source of high-energy real photon can also emit virtual photon.
- They materialize into electron pairs.

How to measure virtual direct photon

Figure 4: Dielectron mas distribution and comparison with cocktail for Au+Au (MB) for $1 < p_T < 1.5 \text{ GeV/c} [1]$.

- Virtual direct photons are measured with e⁺e⁻ pairs as an excess compared to hadronic cocktail (Fig.4).
- Quantification of the excess is done by a two-component fitting.

$$f(m_{ee};r) = (1-r)f_c(m_{ee}) + rf_{dir}(m_{ee})$$

Here f_c is the shape of the cocktail, and f_{dir} is the expected shape of the virtual direct photon.

Current results

Dielectron invariant mass distribution

Figure 6: Foreground and combinatorial background for unlike-sign pairs in Min.Bias with p_⊤ slilces

Figure 7: Foreground, combinatorial background, and their ratio for like-sign pairs in Min. Bias with p_⊤ slilces

- Foreground and combinatorial background are shown with p_T slices in Min.Bias.
- FG to CB ratio is calculated for like-sign. It will be used BG subtraction.

Estimation of correlated backgrounds

Figure 8: Cross pairs from double Dalitz decay of π^0 and η for 1.0<p_T<1.5 GeV/c in Min.Bias.

Hadronic cocktail

Cocktail (EXODUS+GEANT)

Cu+Cu 200GeV Min.Bias

 $1.0 < p_T < 1.5 \text{ GeV/c}$

PYTHIA8+GEANT simulation $1.0 < p_T < 5.0 \text{ GeV/c}$

Figure 9: PYTHIA8 simulation. Red line is electron pairs from same mother particle, and blue line is electron pairs from different mother particle

Correlated backgrounds are obtained by simulations in Fig.8 and Fig.9.

These BGs will be normalized using like-

• Meson to
$$\pi^0$$
 ratios at high- p_T are updated from the preliminary plot.

Figure 10: Hadronic cocktail calculated by EXODUS plus a PHENIX GEANT simulation for
$$1.0 < p_T < 1.5$$
 GeV/c in Min.Bias. • In the previous analysis, the particles are just filtered through the PHENIX acceptance and smeared with the detector resolution.

Analysis

Dielectron invariant mass

The equation of invariant mass

$$M_{ee} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

• The unlike-sign foreground spectrum measures the signal plus background, while the like-sign spectra measure only background.

 $ULS = A_{+-}(Combinatorial) + B_{+-}(Jetpair) + C_{+-}(doubleDalitz) + Signal$

 $LS = A_{++,-}(Combinatorial) + B_{++,-}(Jetpair) + C_{++,-}(doubleDalitz)$

Backgrounds

Combinatorial background (CB)

The distribution of CB is obtained via mixed-event technique. **Cross pairs**

- Cross pairs are produced by two e⁺e⁻ pairs in the final state of a meson.
 - e.g. $\pi^0 \rightarrow \gamma \gamma \rightarrow e^+e^-e^+e^-$, and $\pi^0 \rightarrow e^+e^-\gamma \rightarrow e^+e^-e^+e^-$.
- They are calculated by EXODUS simulation.

Jet pairs are produced by two electrons from same jet or back-to-back jet.

Figure 10: Hadronic cocktail calculated by EXODUS plus a

They are calculated by PYTHIA8 simulation.

Cocktail of hadronic sources

- The input p_T shape of π^0 is parameterized by a modified Hagedron function. $E \frac{d^3 \sigma}{dp^3} = A \left(e^{-(ap_T + bp_T^2)} + \frac{p_T}{p_0} \right)^{-n}$
- The p_T distribution of all other mesons are determined by m_T scaling.
- Each component is normalized by meson/ π^0 ratios measured at high- p_T and branching ratio.

Data set and selections

Data set

• The data of Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV were collected in 2005.

Event selection

- Collisions were collected by Min.Bias trigger.
- The centrality is determined by the BBC charge sum, and divided into four centrality classes (0-10, 10-20, 20-40, and 40-94%).

Track selection and eID

- Charged particles are reconstructed by DC and PC.
- Electrons are identified by EMCal and RICH.

The PHENIX experiment

PHENIX has an excellent eID capability.

Electron identification

- Ring-imaging Cherenkov detector (RICH)
- Electro-Magnetic Calorimeter (EMCal)

Momentum measurement

Drift Chamber (DC)

Centrality, z-vertex ,and Reaction Plane

Beam-Beam Counter (BBC)

Acceptance $\Delta \Phi = \pi$ $|\eta| < 0.35$

Figure 5: Beam view of the PHENIX detector

Simulations

Jet pairs

EXODUS

- A phenomenological event generator.
- It simulates the phase-space distribution of electron source and the decay of these sources.

PYTHIA8

 In this analysis, PYTHIA8 with CTEQ 5L parton distribution function are used.

GEANT

Particles generated EXODUS and PYTHIA8 are

passed through a PHENIX GEANT simulator to apply the PHENIX acceptance and detector resolutions. [2] Physical Review C 81, 034911 (2010), PHENIX collaboration

References [1] Physical Review C 87, 054907 (2013), PHENIX collaboration

Summary and Outlook

Summary

- Direct photons are a good probe to understand the space-time evolution of the produced medium in heavy-ion collisions.
- The motivation of this analysis is search for virtual direct photons and thermal photons in Cu+Cu.
- The analysis is ongoing aiming to be finalized and published.
- FG and CB distributions are evaluated in different p_⊤ slices.
- Correlated BGs are estimated using EXODUS and PYTHIA8.
- Hadronic cocktail is calculated by EXODUS.

[3] Physical Review C 91, 064904 (2015), PHENIX collaboration

Outlook

- Subtraction of correlated BGs is now ongoing.
- After BG subtraction, real data will be compared with cocktail.