Scaling properties of inclusive W^\pm production at hadron colliders

arXiv:1509.03993 [hep-ph]

François Arleo, Émilien Chaplon, Hannu Paukkunen
francois.arleo@cern.ch, emilien.chaplon@cern.ch, hannu.paukkunen@jyu.fi

Introduction

One of the most precisely measured observables at hadron colliders is the rapidity dependence of the lepton charge asymmetry, C_ℓ,

$$C_\ell(y) = \frac{d\sigma^+}{dy} - \frac{d\sigma^-}{dy}$$

(1)

where y is the rapidity of the charged lepton ($\ell = e, \mu$) originating from the leptonic decay of the W boson. We present a simple scaling law for this asymmetry which also predicts that measurements in different collision systems are straightforwardly related.

Scaling: $d\sigma^{W^\pm} / dy$

We consider the process:

- $H_1 + H_2 \rightarrow W^- + X \rightarrow \ell^- + \nu + X$,
- $H_1 + H_2 \rightarrow W^+ + X \rightarrow \ell^+ + \nu + X$.

We find the scaling law

$$d\sigma^{\ell}(s, \xi) \propto s^{\alpha} \times F^\pm(\xi_1, H_1, H_2), \quad y \gg 0,$$

(2)

with \sqrt{s} the center-of-mass energy, and

$$\xi_1 \equiv \frac{M_W}{\sqrt{s}} e^y.$$

(3)

$F^\pm(\xi_1, H_1, H_2)$ is a function that does not depend explicitly on s or y, and α is the effective exponent for the sea-quark PDF at low x:

$$x_{\ell q}(x, Q^2) \approx xq(x, Q^2) \approx N_1 x^{-\alpha} \quad (\alpha > 0).$$

Similar scaling for $y \ll 0$, with $\xi_2 \equiv \frac{M_W}{\sqrt{s}} e^{-y}$.

Scaling: C_ℓ

Since the \sqrt{s} dependence in Eq. (2) is completely in the common prefactor s^{α},

$$C_\ell^{H_1, H_2}(s, \xi_1) \approx F(\xi_1, H_1, H_2), \quad y \gg 0,$$

For the approximate flavor independence of the sea quarks at small x,

$$C_\ell^{H_1, H_2}(s, \xi_1) \approx F(\xi_1, H_1), \quad y \gg 0,$$

independently of the nature of hadron H_2 (nucleon, anti-nucleon, nucleus) probed at small x. Similar scaling again for $y \ll 0$ (with ξ_2).

At the LHC, scaling holds even at $y \sim 0$, because the probed x is already small.

Heavy ions at the LHC

- $y > 0$: scaling between pp, pPb collisions:
 $$C_\ell^{pP}(s, \xi_1) \approx C_\ell^{pPb}(s', \xi_1), \quad y > 0.$$

- $y < 0$: scaling between pPb, PbPb collisions:
 $$C_\ell^{pPb}(s, \xi_2) \approx C_\ell^{pPb}(s', \xi_2), \quad y < 0.$$

Acknowledgements

We would like to thank Raphaël Granier de Cassagnac for discussions. We acknowledge CSC (IT Center for Science in Espoo, Finland) for computational resources. The work of EC is supported by the European Research Council, under the “QuarkGluonPlasmaCMS #250612 grant.”

Comparison with data: $d\sigma^{W^\pm} / dy$

Comparison with data: C_ℓ

The world data on lepton charge asymmetry as a function of y_{rel} taking $\sqrt{s_{rel}} = 5.02$ TeV. $y_{rel} \equiv y \pm \frac{1}{2} \log \frac{M_W}{\sqrt{s}}$, such that e.g. $\xi_1(y, \sqrt{s}) = \xi_1(y_{rel}, \sqrt{s_{rel}})$ for $y > 0$.

Summary

The cross section $d\sigma^{W^\pm} / d\xi_{1,2}$ in forward/backward directions at fixed value of the scaling variable $\xi_{1,2} = (M_W/\sqrt{s}) e^{\pm y}$ should approximately obey a one-parameter power law in \sqrt{s}. Consequently, the lepton charge asymmetry C_ℓ is approximately independent of \sqrt{s} at fixed $\xi_{1,2}$. For $y > 0$ ($y < 0$) C_ℓ also depends effectively only on the nature of the forward-(backward-) going nucleon or nucleus.