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Introduction

We consider a chiral baryon-meson model for nucleons (p/n) and their parity partners
N(1535) in mirror assignment interacting with pions, sigma and omega mesons to describe the
liquid-gas transition of nuclear matter together with chiral symmetry restoration in the high
density phase [1]. The model showed promising results in the mean-field approximation [2].
Here we go beyond the mean-field approximation and include mesonic fluctuations making
use of the Functional Renormalization Group (FRG).

1 The Parity-Doublet Model

The parity-doublet (or mirror) model consists of two species of mirror-assigned baryons [3]
(N1, N2) with opposite parity and chirally invariant mass term ∼ m0, which are coupled to the
scalar/pseudo-scalar meson sector in an SO(4)-invariant way. The corresponding Euclidean
Lagrangian (including baryon chemical potential µB and a vector coupling to the ω-meson)
reads
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With ~φ = (σ, ~π) the mesonic part is given by
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where Fµν = ∂ µων − ∂ νωµ. The mesonic potential at tree-level, i.e. in the microscopic bare
action at the ultraviolet cutoff scale Λ is of the form
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with φ2 = σ2+ ~π2 and parameters µ2,λ,λ6. A non-vanishing pion mass is taken into account
by an explicit linear breaking term cσ.

2 The Functional Renormalization Group

Beyond mean-field fluctuations are included by means of the Functional Renormalization
Group with effective average action Γk whose k-dependence is described by Wetterich’s flow
equation
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The fermionic contributions to the flow of the effective potential are given by
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The bosonic contribution to the flow of the effective potential is identical to the expression in
quark-meson models and reads, for the 3d-analogue of the LPA-optimized regulator,
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The parameters in the UV potential VM are adjusted to realize the physical pion mass
mπ = 138 MeV and σ̄0 = fπ = 93 MeV in the IR. For a given m0 the masses m± are ad-
justed by the Yukawa couplings h1 and h2.

3 Results at T = 0
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Figure 1: Chiral condensate (left) and baryon-density (right) for m0 = 820 MeV in the extended
mean-field (eMF) approximation (purely fermionic RG flow).
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Figure 2: Chiral condensate (left) and masses (right) of the nucleons and their parity partners

at m0 = 800 MeV and 900 MeV with physical pion masses for the full FRG flow.

Fig.(2b) shows how chiral symmetry restoration is realized in the parity-doublet model, rather
than having vanishing baryon masses in the chiral limit, the parity partners’ masses become
degenerate with mass m0.

4 Results at finite temperature

Since the flow equation for the effective potential is already formulated for finite temperatures
it is in principle straightforward to obtain the phase diagram of the model in the (T,µB)-plane.
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Figure 3: Chiral condensate over chemical potential µB and temperature T from the full FRG
flow for m0 = 800 MeV (left) and m0 = 900 MeV (right).
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Figure 4: First-order lines with the corresponding critical endpoints in the (T,µB)-plane for the
liquid-gas (green) and chiral (red) phase transitions for m0 = 800 MeV (left) and
m0 = 900 MeV (right).

5 Conclusions and Outlook

The inclusion of a heavy parity partner in a chiral baryon-meson model such as the parity-
doublet model within an FRG framework allows for a realization of quantitative properties
of symmetric nuclear matter in the extended mean-field approximation without collective
mesonic fluctuations (see Fig.(1)).
Including mesonic fluctuations does not change the qualitative behaviour but one is no longer

free to adjust the parameters so as to reproduce the binding energy Eb ' 16 MeV , the nuclear
saturation density n0 = 0.16 fm−3 and the correct in medium condensate σ̄(n0) ' 69 MeV at
the same time (see Fig.(2a)).
However, a simultaneous description of the liquid-gas transition of nuclear matter together

with a chiral first order transition inside the high baryon-density phase stays robust.
Calculations at finite temperature (and chemical potential) provide the general features of

the phase diagram of the model with the two first-order lines ending in two distinct critical
endpoints.
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