The QCD Critical Point and Related Observables

Marlene Nahrgang

October 1st, 2015

Quark Matter 2015, Kobe, Japan

DAAD
Deutscher Akademischer Austauschdiensst
German Academic Exchange Service
Ideas about the QCD phase diagram

Critical End Point, “... which can be found in heavy-ion collision experiments”
Ideas about the QCD phase diagram

Critical End Point, “which can be found in heavy-ion collision experiments”

“Most importantly one has to extrapolate to the continuum limit.”
Ideas about the QCD phase diagram

Critical End Point, "... which can be found in heavy-ion collision experiments"

"Most importantly one has to extrapolate to the continuum limit."

"...predictions for the location of the QCD critical point..."
Ideas about the QCD phase diagram

Critical End Point, ... which can be found in heavy-ion collision experiments

“Most importantly one has to extrapolate to the continuum limit.”

“...predictions for the location of the QCD critical point...”

C. Fischer, J. Luecker, PLB718 (2013)

“We ... find a potential critical endpoint...”
Ideas about the QCD phase diagram

C. Fischer, J. Luecker, PLB718 (2013)

B. Jacak, B. Müller Science 337 (2012)

"There may be a critical point in the phase diagram..."
The QCD phase diagram and heavy-ion collisions

highly dynamical
short times
small volume
inhomogeneous
The QCD phase diagram and heavy-ion collisions

highly dynamical
short times
small volume
inhomogeneous

Heavy-ion collisions

QCD thermodynamics & critical point

homogeneous
infinite
long lived
static
The QCD phase diagram and heavy-ion collisions

- Highly dynamical
- Short times
- Small volume
- Inhomogeneous

Heavy-ion collisions

Dynamical modeling

QCD thermodynamics & critical point

- Homogeneous
- Infinite
- Long lived
- Static
• Thermodynamic quantities change characteristically at the phase transition.
• Speed of sound $c_s^2 = (\partial p/\partial e)_S \rightarrow$ minimum around a crossover
 \Rightarrow vanishes at the first-order PT
• Compressibility $\kappa_S = -1/V(\partial V/\partial p)_S \rightarrow$ maximum around a crossover
 \Rightarrow diverges at the first-order PT
Phase transitions: the equation of state

- Thermodynamic quantities change characteristically at the phase transition.
- Speed of sound $c_s^2 = (\partial p/\partial e)_S \rightarrow$ minimum around a crossover
 \Rightarrow vanishes at the first-order PT
- Compressibility $\kappa_S = -1/V(\partial V/\partial p)_S \rightarrow$ maximum around a crossover
 \Rightarrow diverges at the first-order PT

"softest point" anomaly in the pressure
Phase transitions: the equation of state

- Modeling a phase transition dynamically is simple!
- Need to know the equation of state and transport coefficients ⇒ fluid dynamics!

A pronounced minimum in the slope of the directed flow v_1 is observed in a first-order phase transition.
Phase transitions: the equation of state

- Modeling a phase transition dynamically is simple!
- Need to know the **equation of state** and **transport coefficients** \(\Rightarrow\) fluid dynamics!

![Graph showing directed flow vs. center of mass energy](image)

- A pronounced minimum in the slope of the directed flow \(v_1\) is **not** observed in a first-order phase transition?
- In dynamical simulations: no clear sensitivity on a phase transition in the **equation of state** yet...

J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stöcker, PRC89 (2014)
Phase transitions: the equation of state

- Modeling a phase transition dynamically is simple!
- Need to know the equation of state and transport coefficients \(\Rightarrow \) fluid dynamics!

- A pronounced minimum in the slope of the directed flow \(v_1 \) is \textbf{not} observed in a first-order phase transition?
- In dynamical simulations: no clear sensitivity on a phase transition in the equation of state yet...

\[\text{Fluctuations matter at the phase transition!} \]
An order parameter changes characteristically at the phase transition -
discontinuously or continuously.
Phase transitions: order parameter & derivatives

- An order parameter changes characteristically at the phase transition - discontinuously or continuously.

- Derivatives reveal more details!
Phase transitions: order parameter & derivatives

- An order parameter changes characteristically at the phase transition - discontinuously or continuously.

- Derivatives reveal more details!
• An order parameter changes characteristically at the phase transition - discontinuously or continuously.

• Derivatives reveal more details!
Phase transitions: order parameter & derivatives

- An order parameter changes characteristically at the phase transition - discontinuously or continuously.

- Derivatives reveal more details!

![Graph showing order parameter and 4th derivative vs. temperature (Tc)]
Phase transitions: order parameter & derivatives

- An order parameter changes characteristically at the phase transition - discontinuously or continuously.

- Derivatives reveal more details!

Derivatives of thermodynamic quantities are related to fluctuations!
What are fluctuation observables?

- Susceptibilities $\chi_n = \frac{\partial^n(P/T^4)}{\partial(\mu/T)^n} \bigg|_T$ relate to fluctuations in multiplicity

$$\chi_1 = \frac{1}{VT^3} \langle N \rangle, \quad \chi_2 = \frac{1}{VT^3} \langle (\Delta N)^2 \rangle, \quad \chi_3 = \frac{1}{VT^3} \langle (\Delta N)^3 \rangle, \quad \chi_4 = \frac{1}{VT^3} \langle (\Delta N)^4 \rangle_c \equiv \frac{1}{VT^3} \left(\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2 \right).$$

- To zeroth-order in volume fluctuations:

$$\frac{\chi_2}{\chi_1} = \frac{\sigma^2}{M}, \quad \frac{\chi_3}{\chi_2} = S\sigma, \quad \frac{\chi_4}{\chi_2} = \kappa \sigma^2$$

variance Skewness Kurtosis

- M, σ^2, S and κ are obtained from measured event-by-event multiplicity distributions.

STAR Coll. PRL112 (2014), PRL113 (2014); PHENIX Coll. arxiv:1506.07834
Non-critical effects on fluctuation observables

- Limited acceptance & detector efficiency.
 A. Bzdak, V. Koch, PRC86 (2012); PRC91 (2015)

- Isospin randomization.
 M. Kitazawa, M. Asakawa, PRC85, PRC86 (2012)

- Volume fluctuations
 V. Skokov, B. Friman, K. Redlich, PRC88 (2013)
 \(\rightarrow\) strongly intensive measures.
 E. Sangaline, arxiv:1505.00261; M. Gorenstein, M. Gazdzicki, PRC84 (2011)

- Global net-baryon number conservation.
 MN, T. Schuster, M. Mitrovski, R. Stock, M. Bleicher, EPJC72 (2012); A. Bzdak, V. Koch, V. Skokov, PRC87 (2013)

\(\Rightarrow\) These effects are or can be included in microscopic transport models, e.g. UrQMD, (P)HSD, or hybrid models = valuable baseline studies!

- Initial fluctuations due to baryon stopping.
Non-critical effects on fluctuation observables

- Limited acceptance & detector efficiency. A. Bzdak, V. Koch, PRC86 (2012); PRC91 (2015)
 (→ strongly intensive measures).
 E. Sangaline, arxiv:1505.00261; M. Gorenstein, M. Gazdzicki, PRC84 (2011)
- Global net-baryon number conservation.
 MN, T. Schuster, M. Mitrovski, R. Stock, M. Bleicher, EPJC72 (2012); A. Bzdak, V. Koch, V. Skokov, PRC87 (2013)

⇒ These effects are or can be included in microscopic transport models, e.g. UrQMD, (P)HSD, or hybrid models = valuable baseline studies!

- Initial fluctuations due to baryon stopping.

Need to be well understood!
Phase transitions: fluctuations

Critical point
- Universal behavior of the long-wavelength modes.
- Correlation length diverges $\xi \to \infty$.
- Fluctuations of the critical mode σ diverge.
- Higher moments more sensitive to ξ:
 \[\langle \Delta \sigma^2 \rangle \propto \xi^2, \quad \langle \Delta \sigma^3 \rangle \propto \xi^{9/2}, \quad \langle \Delta \sigma^4 \rangle_c \propto \xi^7. \]
- For QCD: parameters from 3d Ising universality class.
- Relaxation time $\tau_{\text{rel}} \propto \xi^z$ diverges \Rightarrow critical slowing down!

First-order phase transition
- Coexistence of two stable thermodynamic phases.
- Metastable states above and below $T_c \Rightarrow$ supercooling and -heating.

\[P_{\text{crit}}(\sigma) = \exp\left(\frac{\sigma^2}{\xi^2} - \frac{\sigma^4}{c_2 \xi^4} \right) \]

\[\text{Distribution } P_{\text{crit}}(\sigma), \quad \text{Energy density } \epsilon/\kappa_0 \]

- Nucleation & spinodal decomposition \Rightarrow domain formation.

Phase transitions: fluctuations

Critical point
- Universal behavior of the long-wavelength modes.
- Correlation length diverges $\xi \rightarrow \infty$.
- Fluctuations of the critical mode σ diverge.
- Higher moments more sensitive to ξ:
 \[\langle \Delta \sigma^2 \rangle \propto \xi^2, \quad \langle \Delta \sigma^3 \rangle \propto \xi^{9/2} \]
 \[\langle \Delta \sigma^4 \rangle_c \propto \xi^7. \]
- For QCD: parameters from 3d Ising universality class.
- Relaxation time $\tau_{\text{rel}} \propto \xi^z$ diverges \Rightarrow critical slowing down!

First-order phase transition
- Coexistence of two stable thermodynamic phases.
- Metastable states above and below $T_c \Rightarrow$ supercooling and -heating.
- Nucleation & spinodal decomposition \Rightarrow domain formation.

LARGE fluctuations in equilibrium

Phase transitions: fluctuations

Critical point
- Universal behavior of the long-wavelength modes.
- Correlation length diverges $\xi \to \infty$.
- Fluctuations of the critical mode σ diverge.
- Higher moments more sensitive to ξ:
 \[
 \langle \Delta \sigma^2 \rangle \propto \xi^2, \quad \langle \Delta \sigma^3 \rangle \propto \xi^{9/2}, \quad \langle \Delta \sigma^4 \rangle_c \propto \xi^7.
 \]
- For QCD: parameters from 3d Ising universality class.
- Relaxation time $\tau_{\text{rel}} \propto \xi^z$ diverges \Rightarrow critical slowing down!

First-order phase transition
- Coexistence of two stable thermodynamic phases.
- Metastable states above and below T_c \Rightarrow supercooling and -heating.
- Nucleation & spinodal decomposition \Rightarrow domain formation.

LARGE fluctuations in equilibrium

LARGE fluctuations in nonequilibrium

References:
• Excellent opportunity to study critical fluctuations in conserved-charge densities at finite μ_B.

Critical fluctuations in QCD effective models

Strong T-μ_B-dependence of $R_{4,2} = \chi_4/\chi_2$ toward critical point in FRG approach.

Divergence of fluctuations along the spinodal lines.

Critical fluctuations in QCD effective models

- Excellent opportunity to study critical fluctuations in conserved-charge densities at finite μ_B.

![Graph showing critical fluctuations](image)

- Strong $T-\mu_B$-dependence of $R_{4,2} = \chi_4/\chi_2$ toward critical point in FRG approach.

- Divergence of fluctuations along the spinodal lines.

Clear signals for the phase transition in effective models!

Critical net-proton fluctuations - phenomenology

IDEA: couple order parameter to measurable particles: $g_p\bar{p}\sigma p$

- Mass change in a Hadron Resonance Gas: $m_h \rightarrow m_h + g_h\Delta\sigma$.
- Equilibrium 3d Ising model assumptions for $\Delta\sigma$.
- Fluctuations in net-protons at chemical freeze-out.
- Critical fluctuations are reduced but survive when resonance decays are included!

- Particle emission during Cooper-Frye freeze-out over a hypersurface from fluid dynamical evolution.

M. Bluhm, MN, work in progress

H. Song, L. Jiang, work in progress
Critical net-proton fluctuations - phenomenology

IDEA: couple order parameter to measurable particles: $g_p \bar{p} \sigma p$

- Mass change in a Hadron Resonance Gas: $m_h \rightarrow m_h + g_h \Delta \sigma$.
- Equilibrium 3d Ising model assumptions for $\Delta \sigma$.
- Fluctuations in net-protons at chemical freeze-out.
- Critical fluctuations are reduced but survive when resonance decays are included!

- Particle emission during Cooper-Frye freeze-out over a hypersurface from fluid dynamical evolution.

Still no dynamical fluctuations...
Toward dynamics: memory effects

IDEA: real-time evolution of non-Gaussian cumulants in the scaling regime, where

\[L_{\text{micro}} \ll \xi \ll L_{\text{sys}} \]

- Memory effects are important!
- Magnitude and sign can be different in non-equilibrium compared to equilibrium expectations!
- Different trajectories, chemical freeze-out conditions and \(\tau_{\text{rel}} \) can give similar results.
Toward dynamics: memory effects

IDEA: real-time evolution of non-Gaussian cumulants in the scaling regime, where

\[L_{\text{micro}} \ll \xi \ll L_{\text{sys}} \]

- Memory effects are important!
- Magnitude and sign can be different in non-equilibrium compared to equilibrium expectations!
- Different trajectories, chemical freeze-out conditions and \(\tau_{\text{rel}} \) can give similar results.

Needs dynamical space-time evolution!
IDEA: explicit propagation of order parameters coupled to QGP evolution.

- Relaxation equation for order parameter:
 \[\partial_\mu \partial^\mu \sigma + \frac{\delta U}{\delta \sigma} + g \rho_s + \eta \partial_t \sigma = \xi \]

- Interaction from effective (P)QM model.

- Fluctuations due to noise \(\xi \).

- Coupling to fluid dynamical expansion:
 \[\partial_\mu T^{\mu \nu}_q = S^\nu = -\partial_\mu T_{\sigma}^{\mu \nu}, \quad \partial_\mu N^\mu_q = 0 \]

- Stochastic source term \(\Rightarrow \) dynamical evolution of fluctuations!
Dynamical modeling of fluctuations

IDEA: explicit propagation of order parameters coupled to QGP evolution.

- Relaxation equation for order parameter:
 \[
 \partial_\mu \partial^\mu \sigma + \frac{\delta U}{\delta \sigma} + g \rho_s + \eta \partial_t \sigma = \xi
 \]

- Interaction from effective (P)QM model.

- Fluctuations due to noise ξ.

- Coupling to fluid dynamical expansion:
 \[
 \partial_\mu T_\mu^\nu_q = S^\nu = -\partial_\mu T_\mu^\nu_{\sigma}, \quad \partial_\mu N_\mu^q = 0
 \]

- Stochastic source term \Rightarrow dynamical evolution of fluctuations!

Nonequilibrium chiral fluid dynamics ($N\chi FD$)

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- already in equilibrium there are thermal fluctuations
- the fast processes, which lead to local equilibration also lead to noise!

Conventional ideal fluid dynamics:

\[
T^{\mu\nu} = T_{\text{eq}}^{\mu\nu}
\]
\[
N^\mu = N_{\text{eq}}^\mu
\]

Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Conventional viscous fluid dynamics:

\[
T^{\mu\nu} = T_{eq}^{\mu\nu} + \Delta T_{\text{visc}}^{\mu\nu}
\]

\[
N^\mu = N_{eq}^\mu + \Delta N_{\text{visc}}^\mu
\]

Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Fluctuating viscous fluid dynamics:

\[
T^{\mu\nu} = T^{\mu\nu}_{eq} + \Delta T^{\mu\nu}_{visc} + \Xi^{\mu\nu}
\]

\[
N^{\mu} = N^{\mu}_{eq} + \Delta N^{\mu}_{visc} + I^{\mu}
\]

Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Fluctuating viscous fluid dynamics:

\[
T^{\mu\nu} = T^{\mu\nu}_{\text{eq}} + \Delta T^{\mu\nu}_{\text{visc}} + \Xi^{\mu\nu}
\]

\[
N^\mu = N^\mu_{\text{eq}} + \Delta N^\mu_{\text{visc}} + I^\mu
\]

- \(\langle T^{\mu\nu} T^{\nu\mu} \rangle\) give viscosities (Kubo-formula), consistently with dissipation-fluctuation theorem fluctuations need to be included as well!

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Fluctuating viscous fluid dynamics:

\[
T^{\mu \nu} = T^{\mu \nu}_{\text{eq}} + \Delta T^{\mu \nu}_{\text{visc}} + \Xi^{\mu \nu}
\]

\[
N^{\mu} = N^{\mu}_{\text{eq}} + \Delta N^{\mu}_{\text{visc}} + I^{\mu}
\]

- \(\langle T^{\mu \nu} T^{\mu \nu} \rangle\) give viscosities (Kubo-formula), consistently with dissipation-fluctuation theorem fluctuations need to be included as well!

Important at the critical point: true critical mode is a fluid dynamical density!

Bjorken expansion example with a critical point:

- Near the CP the thermal conductivity is enhanced \Rightarrow enhancement of the rapidity correlator of protons.
Fluid dynamical fluctuations

Bjorken expansion example with a critical point:

- Near the CP the thermal conductivity is enhanced ⇒ enhancement of the rapidity correlator of protons.

How to implement in a $3+1$d relativistic causal fluid dynamical evolution?
Fluid dynamical fluctuations

\[\partial_\mu T^{\mu \nu} = \partial_\mu \left(T^{\mu \nu}_{eq} + \Delta T^{\mu \nu}_{visc} + \Xi^{\mu \nu} \right) = 0 \]

- Enhancement of flow due to additional fluctuations?
- Important check: equilibrium expectations for fluctuations and nonlinear effects.

- Implementing fluid dynamical fluctuations is important, but requires a sustained and systematic effort!
Fluid dynamical fluctuations

\[\partial_\mu T^{\mu\nu} = \partial_\mu \left(T^{\mu\nu}_{\text{eq}} + \Delta T^{\mu\nu}_{\text{visc}} + \Xi^{\mu\nu} \right) = 0 \]

- Enhancement of flow due to additional fluctuations?

- Important check: equilibrium expectations for fluctuations and nonlinear effects.

- Implementing fluid dynamical fluctuations is important, but requires a sustained and systematic effort!

Future: include net-baryon densities!

talk by K. Murase, T. Hirano; arxiv:1304.3243

MN, M. Bluhm, Y. Karpenko, T. Schäfer, S. Bass, work in progress
Toward the discovery of the critical point

Connect the QCD critical point to experimental observables via: realistic dynamical modeling!
Non-critical effects on fluctuation observables

- Global net-baryon number conservation.

\[\text{MN, T. Schuster, M. Mitrovski, R. Stock, M. Bleicher, EPJC72 (2012); A. Bzdak, V. Koch, V. Skokov, PRC87 (2013)} \]

- In a microscopic transport model the microcanonical nature of individual scatterings is preserved.

- Strongly negative kurtosis of net-baryon number due to global conservation and volume fluctuations.

- Net-proton fluctuations follow this trend slightly.

\[K_{\text{eff}} \]

\[\sqrt{S_{\text{NN}}} \text{ (GeV)} \]

\[E_{\text{lab}} = 158A \text{ GeV} \]

\[\text{fixed } |y| \leq 0.5 \]

- net baryon
- net proton
- * net charge

\[\text{Mean Net Baryon Number} \]
Nonequilibrium correlation length

Phenomenological equation: \[
\frac{d}{dt} m_\sigma(t) = -\Gamma[m_\sigma(t)] \left(m_\sigma(t) - \frac{1}{\xi_{eq}(t)} \right)
\]
with input from the dynamical universality class \(\Rightarrow \xi \sim 1.5 - 2.5 \text{ fm} \)

\[
G(r) = \int d^3x d^3y \langle \sigma(x) - \sigma_0 \rangle \langle \sigma(y) - \sigma_0 \rangle
\sim \exp(-r/\xi)
\]

Assume \(\sigma_0 \) is the volume averaged field.

From the curvature of \(V_{\text{eff}} \):
\[
\langle \xi^2 \rangle = \langle 1/m_\sigma^2 \rangle = \left\langle \left(\frac{d^2 V_{\text{eff}}}{d\sigma^2} \right)^{-1} \right\rangle
\]

Definition of \(\xi \) in inhomogeneous systems involves averaging!

\(\Rightarrow \) Similar magnitude of \(\xi \sim 1.5 - 3 \text{ fm}! \)
Finite-size scaling

In the scaling regime $L_{\text{micro}} \ll \xi \ll L$:

- Finite-size scaling for any intensive thermodynamic quantity X with an algebraic singularity at the critical point:

$$X_L(T) \propto L^{\gamma/\nu}$$

- Equilibrium critical exponents:

$$\xi_\infty(T) \propto t^{-\nu}, \quad X_\infty(T) \propto t^{-\gamma}$$

- Position of the peak is shifted:

$$\Delta t_L = (T_c - T_{c,L})/T_c \propto L^{-\lambda}$$

- Vary the system size via centrality, species of nuclei: Can finite-size scaling be seen in observables?

- Expanding system size, freeze-out of fluctuations, critical slowing down... \Rightarrow need dynamical models!

E. Fraga, L. Palhares, P. Sorensen, PRC84 (2011); R. Lacey, PRL114 (2015)
Amplification of initial fluctuations at a FOPT

- Nonequilibrium construction of the EoS from QGP and hadronic matter:

- Significant amplification of initial density irregularities.
- But: no clear signals after final hadronic phase.

Amplification of initial fluctuations at a FOPT

- Nonequilibrium construction of the EoS from QGP and hadronic matter:

\[T=0 \]

- Significant amplification of initial density irregularities.
- But: no clear signals after final hadronic phase.

\[J. \ Steinheimer, \ J. \ Randrup, \ PRL \ 109 \ (2012), \ PRC \ 87 \ (2013) \]

Deterministic evolution \(\Rightarrow \) no dynamical fluctuations
Dynamical modeling at finite μ_B

- Inclusion of net-baryon diffusion into fluid dynamical simulations:
 - Baryon dissipation.
 - Baryon-shear and baryon-bulk coupling terms.
 - Out-of-equilibrium δf corrections.

- Initial state and initial baryon stopping \Rightarrow explore net-baryon rapidity correlations and fluctuations!

- Is there a fluid dynamical phase at high-baryon densities.

- Importance of correct description of the hadronic phase.

- Bulk viscosity needs to be included.
Equation of state + transport coefficients at finite μ_B

Equation of state:
- lattice QCD: cont.-extr. in Taylor expansion up to $O(\mu^2)$
 - Wuppertal-Budapest Coll., JHEP1208 (2012)
 - up to $O(\mu^4)$ not cont.-extr.
 - BNL-Bielefeld-CCNU-Coll., NPA931 (2014)
- effective models: e. g. from
- from 3d Ising model
 - C. Nonaka, M. Asakawa PRC71 (2005); M. Bluhm, B. Kampfer CPOD 2006

Transport coefficients:
- η/s in DQPM, reproduces lattice at $\mu_B = 0$, crossover
 - H. Berrehrah et al., arxiv:1412.1017
- ζ: universal properties in vicinity of critical point, $\zeta \to \infty$ in $Z(2)$
- from transport model calculations
 - talk by Y. Karpenko
HRG + critical fluctuations

\[\xi(\mu_B) = \frac{\xi_{\text{max}}}{\left(1 + \left(\frac{\mu_B - \mu_B^c}{W(\mu_B)}\right)^2\right)^{1/3}} \]

- Model for correlation length from
 C. Athanasiou, K. Rajagopal, M. Stephanov, PRD82 (2010)

- Coupling of resonances to the \(\sigma \)-field:
 \[g_{R\sigma} = \frac{m_R}{m_p} (3 - |S_R|) \frac{g_p \sigma}{3} . \]

- Additional parameters \(\tilde{\lambda}_3, \tilde{\lambda}_4 \) should depend on \(\sqrt{s} \).