Direct-photon+hadron correlations to study parton energy loss with the STAR experiment

Nihar Ranjan Sahoo
(for the STAR collaboration)
Texas A&M University, USA
Motivation: Direct photon and its advantage

- Compton scattering ($qg\rightarrow q\gamma$) dominates for the direct photon production
- It doesn’t interact strongly in medium
 - Transverse energy approximates that of initial parton p_T in photon-jet events
- A good tomographic probe of the quark-gluon plasma in high-energy heavy-ion collisions
 - Volume emission dominates for dir. photon trigger hadron correlation unlike di-hadron correlation

Zhang et al., PRL 103, 032302 (2009)

Parton energy loss in medium depends on

- Initial energy (E), Path length (L), Color factor (C_R), coupling strength (α_s), transport coefficient ($\hat{\gamma}$) etc.
 - Initial energy: γ_{dir}-h± correlation at different p_T^{trig}
 - Path length or Color factor: comparison between γ_{dir}-h± and π0-h± correlation (Away-side hadrons of γ_{dir} triggered should suppress less compared with that of π^0)
Medium Effect: Direct photon-hadron and Di-hadron correlation

- The medium effect for γ_{dir}-hadron and π^0-hadron by,

 \[I_{AA} = \frac{D(z_T)}{D(z_T)_{pp}} \]

 Nuclear modification factor:

 $D(z_T)_{AA}$: per trigger away-side yield for A+A collisions
 $D(z_T)_{pp}$: per trigger away-side yield for p+p collisions

 \[8 < p_T^{\text{trig}} < 16 \text{ GeV/c}, \ 0.3 < z_T < 0.9 \]

Key questions on
- What about lost energy?
- Redistribution in medium or recovery at low z_T?

Beside, small z_T dominated by volume emission

Zhang et al., PRL 103, 032302 (2009)

To understand medium effect at low z_T
- Triggered by high p_T γ_{dir} and π^0: $12 < p_T^{\text{trig}} < 20$ GeV/c
- Low p_T associated hadron: $p_T^{\text{assoc}} > 1.2$ GeV/c

(STAR Collab., PRC 82, 034909)

Nihar Ranjan Sahoo
STAR detector system: Advantage and data sets

- Barrel ElectroMagnetic Calorimeter (BEMC) to identify EM clusters
- Time Projection Chamber (TPC) for identifying charged hadron tracks
- STAR detector system gives unique opportunity full 2π-azimuth and wide $|\eta| < 1.0$, both for BEMC and TPC
- Triggered on high energy tower in the BEMC

- Au+Au 200 GeV
 (year-11: Int. Luminosity of 2.8 nb$^{-1}$)
- p+p 200 GeV
 (year-9: Int. Luminosity of 23 pb$^{-1}$)

- Discrimination between $\pi^0 \rightarrow \gamma\gamma$ and γ_{dir} is key part of this analysis

 - By Transverse Shower Profile (TSP) method
 - Using Barrel shower Maximum detector (BSMD)
Transverse shower profile: $\pi^0/\gamma_{\text{dir}}$ discrimination

- BSMD η-strips and ϕ-strips along with BEMC tower give information about Transverse Shower Profile (TSP)

\[
\text{TSP} = \frac{E_{\text{cluster}}}{\sum_i e_i r_i^{1.5}}
\]

- E_{cluster}: Cluster energy, e_i: BSMD strip energy, r_i: distance of the strip from the center of the cluster

- Wider shower represents small TSP and vise versa

- TSP cuts are tuned to get
 - a nearly pure sample of π^0 (called "π^0_{rich}"")
 - a sample with enhanced fraction of γ_{dir} (called "γ_{rich}"")

Nihar Ranjan Sahoo
Correlation functions

- Raw correlation functions for π^0_{rich} and γ_{rich} triggered associated hadrons in $|\eta| < 1.0$
- Uncorrelated background is then subtracted and $\Delta \phi$ acceptance is corrected using the mixed events (modulated with elliptic flow for Au+Au collisions)
Yields associated with π^0 - trigger

- Near-side and away-side yields are extracted within $|\Delta\phi| \leq 1.4$ and $|\Delta\phi - \pi| \leq 1.4$

- AuAu central (0-12%) collisions compare with pp collisions at 200 GeV colliding energy

- Away-side yields show suppression in AuAu collisions as compared with pp collisions

- Near-side shows no significant suppression

- By integrating near-side yields, we estimated 85(±3)% fraction of energy carried by π^0 over “jet energy” ($\pi^0 +$ charged hadrons) in pp 200 GeV
Yields associated with $\gamma_{dir} - \text{trigger}$: Fragmentation function

Away-side yields are extracted within $|\Delta \phi - \pi| \leq 1.4$

$$Y_{\gamma_{dir} + h} = \frac{Y_{a\gamma_{rich} + h} - RY_{a\pi^0 + h}}{1 - R}$$

$Y_{a(n)}$ and $Y_{\pi^0 + h}$: away-side (near-side) yields of associated particles per γ_{rich} and π^0 trigger, respectively.

Purity of dir. Photon over photon rich sample

$$1 - R = \frac{N_{\gamma_{dir}}}{N_{\gamma_{rich}}}$$

(1 - R) are ~40% and ~70% for p+p and Au+Au central (0-12%) collisions, respectively

- Away-side yields show suppression in Au+Au collisions as compared with p+p
Nuclear modification factor: \(I_{AA} \) of \(\Upsilon_{dir} \) and \(\pi^0 \)

\[I_{AA} = \frac{D(z_T)_{AA}}{D(z_T)_{pp}} \]

- \(I_{AA}^{\pi^0-h} \) and \(I_{AA}^{\Upsilon_{dir}-h} \) show similar and strong suppression
- At very low \(z_T \) (0.1 < \(z_T < 0.2 \)), both \(I_{AA}^{\pi^0-h} \) and \(I_{AA}^{\Upsilon_{dir}-h} \) show less suppression than at high \(z_T \)
- Models don’t include absorption and redistribution of lost energy in the medium
The nuclear modification factor, $I_{AA} = \frac{D(z_T)_{AA}}{D(z_T)_{pp}}$, is defined as the ratio of the yield in Au+Au collisions to that in pp collisions. In the STAR preliminary report, data is shown for Au+Au 200 GeV (0-12%) collisions with p_T^{Trig} ranging from 12 to 20 GeV/c and p_T^{assoc} from 1.2 GeV/c.

- These error bars are largely correlated, but within these uncertainties, no significant dependence of suppression on integration window is observed both for $\Upsilon_{\text{dir}}-h^\pm$ and π^0-h^\pm.

I_{AA} results at high p_T^{Trig} (12 < p_T^{Trig} < 20 GeV/c) show no significant dependence on the integration window.
Nuclear modification factor: p_{T}^{assoc} and p_{T}^{Trig} dependence

- Clear away-side p_{T}^{assoc} dependence of suppression
- No direct photon trigger energy dependence of suppression at high-p_{T}
- Both the models explain the data well

G.-Y Qin et al., PRC 80, 054909 (2009)

$$I_{AA} = \frac{D(z_T)_{AA}}{D(z_T)_{pp}}$$
Summary

- \(\gamma_{\text{dir}} \) + hadron and \(\pi^0 \) + hadron correlation study help to understand the effect of medium formation in AuAu comparison with pp collisions.

- Transverse shower profile technique is used to discriminate between direct photon and neutral pion sample.

- Away-side hadron of triggered dir. photon and \(\pi^0 \) show similar suppression, whereas at very low \(z_T \) suppression is less compared to high \(z_T \).
 - No direct photon trigger energy dependence of suppression is observed at high-\(p_T \).
 - \(I_{AA}^{\pi^0-h} < I_{AA}^{\gamma_{\text{dir}}-h} \) isn’t observed in \(0.1 < z_T < 0.9 \) range, within uncertainties.

- Clear away-side \(p_T^{\text{assoc}} \) dependence of suppression is observed for \(I_{AA}^{\gamma_{\text{dir}}-h} \).

Nihar Ranjan Sahoo
Back Up
Extraction of associated Yields: Of Υ_{dir} and π^0 trigger

- Near-side and away-side yields are extracted within $|\Delta \phi| \leq 1.3$ and $|\Delta \phi - \pi| \leq 1.3$
- Extracted raw yields are corrected for charge particle reconstruction efficiency

- Extraction of Υ_{dir} associated yields:
 Assuming near side Υ_{dir} associated hadron yield is zero,

\[
Y_{\Upsilon_{\text{dir}}+h} = \frac{Y^a_{\Upsilon_{\text{rich}}+h} - \frac{RY^a_{\pi^0+h}}{1-R}}{1-R}
\]

\[
R = \frac{Y^n_{\Upsilon_{\text{rich}}+h}}{Y^n_{\pi^0+h}}
\]

and

\[
1 - R = \frac{N_{\Upsilon_{\text{dir}}}}{N_{\Upsilon_{\text{rich}}}}
\]

- The values of $(1 - R)$ are found to be $\sim 40\%$ and $\sim 70\%$ for pp and AuAu central $(0-10\%)$ collisions, respectively

$Y^a(n)$: away-side (near-side) yields of associated particles per Υ_{rich} trigger

$Y^a(n)$: away-side (near-side) yields of associated particles per π^0 trigger

Nihar Ranjan Sahoo
Contribution of π^0 energy over total jet energy

83%-88% fraction of energy carried by π^0 over total jet energy