Studying heavy flavor (charm and beauty) production via dielectrons in p + p and d + Au collisions Deepali Sharma for the PHENIX Collaboration

SUNY @ Stony Brook, N.Y.

Motivation

The dielectron mass spectrum is a unique probe to directly access the different stages of a heavy-ion collision. The intermediate ($1 < m_{e^+e^-} < 3 \text{ GeV}/c^2$) and high $(4 < m_{e^+e^-} < 8 \text{ GeV}/c^2)$ mass regions are dominated by semi-leptonic decays of open charm and beauty respectively, and so provide information about the heavy flavor dynamics. Utilizing the double differential information in $m_{e^+e^-}$ and p_T space provides sensitivity to the regions where either charm or beauty dominates. This allows separation of $c\bar{c}$ and $b\bar{b}$ contributions, which are then quantified by comparison to pythia and mc@nlo simulations.

Dielectron mass spectrum in p + p **collisions**

► Good agreement with cocktail.

Double differential fits to the p + p **data**

- Extended mass coverage to 12 GeV/ c^2 .
- Like-sign pairs used for background subtraction after correcting for relative acceptance difference between unlike/like
- sign. Cocktail includes contributions of: ► Hadrons
- Heavy flavor
- ► Drell-Yan

Hadronic cocktail

- Parametrize the π^{\pm} and π^{0} data for a given collision system $E \frac{d^3 \sigma}{dp^3} = \frac{A}{(e^{-(ap_T + bp_T^2)} + p_T/p_0)^n}$
- Use m_T scaling for shape of other hadrons: $p_T
 ightarrow \sqrt{p_T^2 - m_{\pi^0}^2 + m_{hadron}^2}$ and fix normalization using the existing data where available.

Integrated mass and p_T spectrum of $c\bar{c} + b\bar{b}$ pairs

Heavy flavor yield extraction

- Subtract in mass and p_T
- Vector mesons
- Pseudoscalar mesons ► Drell-Yan.
- ► We are left with open heavy flavor decays
- Fit in m, p_T with
- ► MC@NLO, an NLO event generator
- ► PYTHIA, a LO event generator
- Following general trends observed
- charm dominates at
- low p_T , low mass
- beauty dominates at
- low p_T , high mass
- high p_T , low mass

- Multiple ways to produce e^+e^- pairs from *bb*.
- All contribute similar total pairs.

- $\overline{\overline{v}}_{10^{-11}}$ 1 2 3 4 5 6 7
- Highlighted region in blue, in the mass projection, is excluded from the double differentail fits.

• Both PYTHIA and MC@NLO describe the data equally well.

Extracted $\sigma_{c\bar{c}}$ and $\sigma_{b\bar{b}}$ in p + p and d + Au

Details of the d + Au results from the same technique can be found in **PRC 91**,

- Very large model dependence for the cc cross-section.
- bb cross-section comes out to be model independent.
- If $m_q >> p$, the e^{\pm} decay randomizes the opening angle.

But they populate different regions of mass, p_T space.

• At high p_T , decays from a single open B meson completely dominate the mass spectrum.

Due to oscillations, the other decay chains contribute to both like- and unlike-sign pairs.

p + p and d + Au comparison

- No significant modification seen in the heavy flavor pair spectrum in d + Au as compared to p + p.
- Word of caution: However, this is not the typical R_{dAu} plot. These are electron pairs and so they mostly do not come from the same quark.

