Motivation

We investigated D meson properties in a magnetic field induced in relativistic heavy-ion collisions by using QCD sum rule approach. This formalism can include magnetic field effects such as spin mixing, hadron Landau level, B-dependence of QCD condensates. D meson is a good probe of these phenomena.

Method

Input
D meson OPE in vacuum

- Free term (LO)
- D meson OPE (QCD sum rule)
- Quark and Gluon condensate (QCD vacuum condensates)
- Mixed condensate (quark-gluon cond.)

Output

We use expansion in weak B-field up to (eB)^2

- B-dependence of OPE
- B-dependence of hadron

Results

1. Mass shift
2. \(\langle \bar{s}q \rangle \) condensate

⇒ (\(\bar{s}q \)) condensate contributes to positive mass shift in D mesons

Summary

Neutral D

- No change

Charged D

- Increase

Spin mixing

- Decrease

\(\langle \bar{s}q \rangle \) condensate

- Increase

Our results

- No change

Increase